In order to improve the screening efficiency of electrocardiogram and reduce the pressure on medical staff, a model based on convolutional neural network, long and short-term memory neural network and SE network (CNN-LSTM-SE), was proposed to divide electrocardiogram into five categories. T...
基于CNN-LSTM-SE的心律失常分类预测系统是由北方民族大学著作的软件著作,该软件著作登记号为:2024SR1724703,属于分类,想要查询更多关于基于CNN-LSTM-SE的心律失常分类预测系统著作的著作权信息就到天眼查官网!
CNN是一种专门用于图像处理的神经网络模型,通过卷积操作可以有效地捕捉到图像中的局部特征。在CNN的基础上,LSTM模型被引入用于处理时间序列数据。LSTM具有记忆单元和门控机制,可以有效地捕捉到时间序列数据中的长期依赖关系。 接下来,SE注意力机制被引入到CNN-LSTM模型中。SE注意力机制可以根据输入数据的重要性自适应地...
注意力机制模块: SEBlock(Squeeze-and-Excitation Block)是一种聚焦于通道维度而提出一种新的结构单元,为模型添加了通道注意力机制,该机制通过添加各个特征通道的重要程度的权重,针对不同的任务增强或者抑制对应的通道,以此来提取有用的特征。该模块的内部操作流程如图,总体分为三步:首先是Squeeze 压缩操作,对空间维度...
基本描述 1.MATLAB实现SSA-CNN-LSTM-Attention数据分类预测,运行环境Matlab2021b及以上; 2.基于麻雀优化算法(SSA)、卷积神经网络(CNN)和长短期记忆网络(LSTM)、SE注意力机制的数据分类预测程序; 3.多特征…
CNN擅长提取图像数据的局部特征,而LSTM则擅长捕捉序列数据中的长期依赖关系。通过结合两者的优势,我们可以让模型同时考虑到数据的时序信息和空间信息,减少参数降低过拟合风险,从而提供更精确的预测、更出色的性能以及更高的训练效率。科技 计算机技术 人工智能 CNN 大语言模型 机器学习 深度学习 LSTM cv 大模型 nlp llm...
摘要 提出了以长短期记忆网络(LSTM)与卷积神经网络(CNN)为主要框架的深度学习网络,基于该网络实现模式识别.LSTM-CNN以时域曲线及其短时傅里叶变换(STFT)结果作为网络输入,LSTM提取输入信号的时序特征,CNN提取时域曲线的... 出版源 中国激光杂社 , ...
本文通过模型输入拟人化,卷积神经网络(convolutional neural network)编码以及融合门机制并结合长短时记忆单元(long short-term memory,LSTM)优化了语言模型,提出了结合LSTM和CNN混合架构的深度神经网络语言模型(Gated CLSTM).利用深度学习框架Tensorflow实现了Gated CLSTM.实验环节还采用了负采样及循环投影层等经典的优化技术...
CNN-LSTM-Attention多输入多输出回归预测 基于卷积神经网络-长短期记忆网络结合SE注意力机制的多输入多输出预测 注释清晰 Matlab语言 1.CNN-LSTM-Attention多输出回归预测,多输入多输出 ,LSTM也可以替换成BiLSTM、GRU, matlab需要2020b及以上版本 评价指标包括:R2、MAE等,效果如图所示,代码质量极高~ 2.直接替换数据...
总的来说,CNN-LSTM-Attention算法是一种基于卷积-长短期记忆神经网络结合SE注意力机制的区间概率预测算法。通过将CNN和LSTM模型结合起来,并引入SE注意力机制,该算法能够更好地捕捉到输入数据中的复杂关系,提高预测的准确性。这种算法的应用潜力非常广泛,可以在各个领域中用于区间概率预测任务,如金融市场预测、天气预测等...