performance['CNN + LSTM'] = cnn_lstm_model.evaluate(conv_window.test, verbose=0) val_performance['CNN + LSTM'] 和performance['CNN + LSTM']的结果分别是:[0.0049638268537819386, 0.05140865221619606]和[0.003044598735868931, 0.04159070551395416]。 为了更直观的比较,我们将上一篇实验过的LSTM模型的预测效果绘...
其创新点在于通过结合 CNN 和 LSTM 的双向卷积神经网络长短期记忆(CNN-LSTM)架构,提出了一种创新的预测股票价格的方法,能够捕捉历史股价数据中的时间依赖性和空间模式,提高预测准确性,并更好地理解市场动态。它还提出了一种将卷积神经网络(CNN)与优化超参数和均值方差预测(MVF)模型相结合的新型混合方法,用于股票组合...
方法:论文提出了一种识别手语的混合模型,通过结合卷积神经网络(CNN)和基于注意力机制的长短期记忆(LSTM)神经网络来识别独立的手语词汇。该模型使用MobileNetV2作为骨干模型,通过CNN提取视频帧的空间特征,并将其传递给LSTM进行长期依赖的学习。 创新点: 作者提出了一种基于CNN和LSTM的方法,采用注意机制替代LSTM的输出层,...
方法:论文使用现代深度学习技术开发了一个基于CNN-LSTM框架的预测模型,用于预测河流中的电导率(EC)。通过与传统的机器学习方法(如多层感知器神经网络MLP、K最近邻KNN和极端梯度提升XGBoost)进行比较,展示了CNN-LSTM模型在预测澳大利亚两条河流(Albert River和Barratta Creek)的电导率方面的优越性能。 创新点: 提出了一...
在很多的时间序列预测任务中,利用卷积神经网络(CNN)和长短期记忆网络(LSTM)的混合模型是目前常见的深度学习解决方案之一。 CNN和LSTM各自有不同的特长,CNN擅长局部模式的捕捉,LSTM擅长捕捉序列的长依赖关系。通过混合这两种网络,可以非常好地学习时间序列数据中的复杂模式。
时间序列回归预测是数据分析的重要领域,旨在根据历史数据预测未来时刻的数值。近年来,深度学习模型如卷积神经网络(Convolutional Neural Network, CNN)、lstm在时间序列预测中展现出显著优势。然而,模型参数的有效设置对预测性能至关重要。灰狼优化(GWO)作为一种高效的全局优化算法,被引入用于优化深度学习模型的超参数。
CNN-LSTM模型 这篇文章将带大家通过Tensorflow框架搭建一个基于CNN-LSTM的简单股票价格预测模型,这个模型首先是将一个窗口的股票数据转换为一个2D的图像数据,然后通过CNN进行特征提取。具体地,定义一段股票序列为: 其中,每个x是一个m维的向量,这样得到的就是一个r乘m的矩阵形式,因此对于这个矩阵可以通过CNN进行特征...
时间序列预测-基于LSTM-CNN的人体活动识别 本文主要利用LSTM和CNN来处理移动传感器产生的数据识别人类活动。 回到顶部 传感器数据集 数据组成 这个项目使用了WISDM (Wireless Sensor Data Mining) Lab实验室公开的Actitracker的数据集 其中数据: 测试记录:1,098,207 条...
下面我们开始使用三种不同的时间序列算法:SARIMA、XGBoost和CNN-LSTM,进行建模并比较 对于所有三个模型,都使用预测下一个数据点进行预测。Walk-forward验证是一种用于时间序列建模的技术,因为随着时间的推移,预测会变得不那么准确,因此更实用的方法是在实际数据可用时,用实际数据重新训练模型。
我们所提出的基于注意力机制的CNN-LSTM与XGBoost混合模型简称为AttCLX。结果表明,该模型更为有效,预测精度相对较高,能够帮助投资者或机构做出决策,实现扩大收益和规避风险的目的。 基于序列数据的深度学习 (一)基本前馈神经网络(FFNN) 在基本前馈神经网络(FFNN)中,当前时刻的输出仅由当前时刻的输入决定,这限制了FFNN...