本文采取了并行结构,基于脑电图的时空特征,构建了一个CNN-LSTM并行结构模型,如上图所示, CNN由一个输入层、一个一维卷积层、一个可分离的卷积层和2个扁平层组成。LSTM由输入层、LSTM层和扁平层组成。最后,这两个部分被归类为完全连接的层。除此之外,这个混合模型使用直系线性单元(ReLU)激活和批量归一化(BN)来...
CNN-LSTM模型的核心思想是将CNN和LSTM的优势结合起来。CNN擅长提取数据的局部空间特征,例如图像中的边缘、纹理等;而LSTM则擅长处理时间序列数据,能够捕捉长期依赖关系。通过将CNN提取的特征输入到LSTM中,模型可以同时利用数据的空间和时间信息,从而在复杂任务中取得更好的效果。 2. CNN-LSTM...
CNN-LSTM模型充分考虑了降水对时间和空间的依赖性,在RMSE和MAE值方面CNN-LSTM模型均小于其他模型;在CC值方面CNN-LSTM模型均大于其他模型。这表明CNN-LSTM模型的性能更优于其他模型。 图5.中国大陆原TRMM数据和CNN-LSTM融合降水数据度量值的空间分布:原TRMM数据的CC(a)、RMSE(c)、MAE(e),以及CNN-LSTM模型的CC(...
1.1 CNN 模型 卷积神经网络(CNN)可用作编码器-解码器结构中的编码器。 CNN不直接支持序列输入;相反,一维CNN能够读取序列输入并自动学习显着特征。然后可以由LSTM解码器解释这些内容。CNN和LSTM的混合模型称为CNN-LSTM模型,在编码器-解码器结构中一起使用。CNN希望输入的数据具有与LSTM模型相同的3D结构,尽管将多个特征...
CEEMDAN +组合预测模型(CNN-LSTM + ARIMA) - 知乎 (zhihu.com) 前言 本文基于前期介绍的风速数据(文末附数据集),介绍一种多特征变量序列预测模型CNN-LSTM,以提高时间序列数据的预测性能。该数据集一共有天气、温度、湿度、气压、风速等九个变量,通过滑动窗口制作数据集,利用多变量来预测风速。 LSTF(Long Sequenc...
1.2 CNN - LSTM 模型 考虑到影响因素众多,故本文使用了一种基于 CNN - LSTM 的多变量预测模型,将数据的多个变量输入进神经网络模型中,通过 CNN 对数据进行特征提取,其中原理如下。 定义一段水位数据序列为细胞状态Ct由输入门和遗忘门的变化决定,其表达式如下:2 运行结果...
其中损失函数选择了cnn和lstm模型最常用的Tanh(双曲正切函数), 起初遇到了模型未收敛的问题,如下所示 模型未收敛的主要原因如下: 学习率设置不合理,优化算法设置不合理,出现了过拟合问题,训练批次设置问题等等。 对于学习率的设置通常可以有如下几个策略
预训练模型是基于序列到序列框架的基于注意力机制的CNN-LSTM模型,其中基于注意力机制的CNN作为编码器,双向LSTM作为解码器。该模型首先利用卷积操作提取原始股票数据的深层特征,然后利用长短期记忆网络挖掘长期时间序列特征,最后采用XGBoost模型进行微调,从而能够充分挖掘多个时期的股票市场信息。我们所提出的基于注意力机制的...
基于注意力机制的 CNN-LSTM 模型由数据预处理、基于注意力机制的 CNN 单元、LSTM 单元和输出单元三部分构成,详细介绍如下。 (1)数据预处理:针对异常数据,采用临近均值进行 替换;针对不同变量取值大小相差较大,进行归一化。 按照 4.3节介绍的划分方法将数据集划分为训练集、测 试集和验证集。
将CNN与LSTM进行融合的方法主要有两种:一是将CNN提取的特征序列作为LSTM模型的输入,二是在LSTM中嵌入...