Matlab实现CNN-GRU-Attention多变量时间序列预测 1.data为数据集,格式为excel,4个输入特征,1个输出特征,考虑历史特征的影响,多变量时间序列预测; 2.CNN_GRU_AttentionNTS.m为主程序文件,运行即可; 3.命令窗口输出R2、MAE、MAPE、MSE和MBE,可在下载区获取数据和程序内容; 注意程序和数据放在一个文件夹,运行环境为...
而WOA-Attention-CNN-GRU模型作为一种新型的算法模型,具有更强的数据挖掘和学习能力,能够更好地应对股价预测中的复杂性和不确定性。因此,我们有理由相信,WOA-Attention-CNN-GRU模型将成为未来股价预测领域的重要利器,为投资者和市场分析师提供更准确、更可靠的预测服务。 综上所述,WOA-Attention-CNN-GRU模型作为一种...
【WOA-CNN-GRU-Attention鲸鱼算法优化卷积门控循环单元融合注意力机制多变量时间序列预测】基于WOA-CNN-GRU-Attention鲸鱼算法优化卷积门控循环单元融合注意力机制多变量时间序列预测,预测效果如上, WOA-CNN-GRU-Attention多变量时间序列预测地址:https://mbd.pub/o/bread/mbd-ZJ6Zkplv WOA-CNN-BiGRU-Attention多变量...
1.Matlab实现CEEMDAN-Kmeans-VMD-CNN-GRU-Attentionr融合K均值聚类的数据双重分解+卷积门控循环单元+注意力机制多元时间序列预测(完整源码和数据) 2.CEEMDAN分解,计算样本熵,根据样本熵进行kmeans聚类,调用VMD对高频分量二次分解, VMD分解的高频分量与前分量作为卷积门控循环单元注意力机制模型的目标输出分别预测后相加。
基于CPO-CNN-GRU-Attention、CNN-GRU-Attention、CPO-CNN-GRU、CNN-GRU四模型多变量时序预测一键对比(仅运行一个main即可) Matlab代码,每个模型的预测结果和组合对比结果都有! 1.无需繁琐步骤,只需要运行一个main即可一键出所有图像。 2.程序已经调试好,无需更改代码替换数据集即可运行!!!数据格式为excel!
1.MATLAB实现SSA-CNN-GRU-Attention多变量时间序列预测(SE注意力机制); 2.运行环境为Matlab2021b; 3.data为数据集,excel数据,输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测, main.m为主程序,运行即可,所有文件放在一个文件夹; 4.命令窗口输出R2、MSE、MAE、MAPE和MBE多指标评价; ...
基于卷积神经网络-门控循环单元结合多头注意力机制CNN-GRU-multihead-Attention多维时序预测,多变量输入模型。matlab代码,2021b及其以上。评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。代码参考:https://mbd.pub/o/bread/ZZmbmZtr CNN-LSTM-multihead-Attention多维时序 https://mbd....
预测效果 基本描述 1.MATLAB实现WOA-CNN-GRU-Attention时间序列预测(SE注意力机制),鲸鱼优化卷积门控循环单元注意力时间序列预测; 2.运行环境为Matlab2021b; 3.data为数据集,excel数据,单变量时间序列预测, main.m为主程序,运行即可,所有文件放在一个文件夹; ...
综上所述,WOA-Attention-CNN-GRU模型作为一种新型的股价预测算法模型,具有着巨大的潜力和发展空间。通过结合鲸鱼算法优化、注意力机制、卷积神经网络和门控循环单元,该模型在股价时序预测中取得了令人瞩目的成果,为金融领域的研究和实践带来了新的机遇和挑战。相信随着技术的不断进步和应用的不断深化,WOA-Attention-CNN...