综上,基于CNN-GRU-Attention混合神经网络的负荷预测方法是一种有效的负荷预测方法,可以为电力系统的负荷预测提供重要的参考和支持。 2 运行结果 To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. Model: "sequential" ___ Layer (type) Output Shape Param # === resh...
基于CNN-GRU的风电功率预测研究通常包括以下几个步骤: 1. 数据收集与预处理 收集与风电场发电功率相关的数据,包括风速、风向、温度、湿度等气象数据以及风电场的历史功率数据。对数据进行预处理,包括数据清洗、缺失值处理、异常值处理等,确保数据的质量和完整性。
小论文|创新|精度极高|基于CNN-GRU-Attention混合神经网络的负荷预测方法(Python代码实现), 视频播放量 60、弹幕量 0、点赞数 2、投硬币枚数 0、收藏人数 1、转发人数 0, 视频作者 荔枝科研社, 作者简介 编程与仿真领域爱好者(微信公众号:荔枝科研社),欢迎您的交流,相
卷积神经网络(CNN)是一种常用的深度学习模型,它在图像处理领域取得了很大的成功。在故障诊断中,我们可以将故障数据看作是一种图像数据,通过卷积操作可以提取出图像的局部特征。然而,单纯的CNN模型可能无法捕捉到时间序列数据中的时序信息。因此,我们引入门控循环单元(GRU)来处理时序数据。 CNN-GRU模型的流程如下: 数据...
预测效果 基本介绍 程序设计 参考资料 预测效果 基本介绍 1.时序预测 | MATLAB实现CNN-GRU卷积门控循环单元时间序列预测(风电功率预测); 2.运行环境为Matlab2021b; 3.单个变量时间序列预测; 4.data为数据集,单个变量excel数据,MainCNN_GRUTS.m为主程序,运行即可,所有文件放在一个文件夹; 5.命令窗口输出R2、MSE...
总结起来,基于卷积神经网络结合门控循环单元(CNN-GRU)的交通预测算法步骤包括数据准备、特征提取、序列建模、模型训练、模型评估和预测应用。这种算法结合了CNN和GRU的优势,能够更好地处理股价预测问题。然而,在实际应用中,我们需要综合考虑多种算法和方法,以提高预测的准确性和稳定性。
简介:【GRU回归预测】基于卷积神经网络结合门控循环单元CNN-GRU实现数据多维输入单输出预测附matlab代码 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。 🍎个人主页:Matlab科研工作室 🍊个人信条:格物致知。 更多Matlab仿真内容点击👇 ...
简介:【GRU时序预测】基于卷积神经网络结合门控循环单元CNN-GRU实现时间序列预测附matlab代码 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。 🍎个人主页:Matlab科研工作室 🍊个人信条:格物致知。 更多Matlab仿真内容点击👇 ...
CNN-GRU-Attention负荷预测 在本节,我们将介绍使用卷积神经网络(CNN)、门控循环单元(GRU)和注意力机制(Attention)进行负荷预测的方法。负荷预测在电力系统管理中至关重要,能够帮助优化资源配置和提高效率。下面展示了使用Keras实现的Python代码。Python代码实现 首先,将数据集切分为输入和输出:前一个...
卷积神经网络(CNN)和门控循环单元(GRU)是两种常用于序列数据预测的深度学习模型。CNN主要用于处理图像数据,而GRU则适用于处理时序数据。将这两种模型结合起来可以有效地进行单维时间序列预测。 在使用CNN-GRU进行时间序列预测时,首先需要将时间序列数据转化为二维图像数据。这可以通过将时间序列数据划分为时间窗口,并将每...