而Transformer模型采用了编码器-解码器结构,允许模型在输入序列上进行编码,然后在输出序列上进行解码,从而实现了并行计算,大大提高了模型训练的速度。 特征抽取问题:Transformer模型通过自注意力机制和多层神经网络结构,能够有效地从输入序列中抽取丰富的特征信息,为后续的任务提供更好的支持。 工作原理 Transformer工作原理 ...
计算机视觉(CV):Transformer也逐渐在CV领域崭露头角。在图像分类任务中,Vision Transformer(ViT)及其变体通过将图像分割成小块并将其视为序列,应用Transformer架构进行处理,取得了与传统CNN相当甚至更好的效果。在目标检测、语义分割等更复杂的CV任务中,Transformer与CNN结合的模型也展现出了强大的性能,能够更好地捕捉图...
本文旨在介绍深度学习架构,包括卷积神经网络CNN、循环神经网络RNN、生成对抗网络GAN、Transformer和Encoder-Decoder架构。 1、卷积神经网络(CNN) 卷积神经网络CNN是一种人工神经网络,旨在处理和分析具有网格状拓扑结构的数据,如图像和视频。将CNN想象成一个多层过滤器,可以处理图像以提取有意义的特征并进行推理预测。 想象...
最常用的人工神经网络(Artificial Neural Network,ANN)主要包括以下四种:前馈神经网络(Feedforward Neural Network,FNN)、卷积神经网络(Convolutional Neural Network,CNN)和循环神经网络(Recurrent Neural Network,RNN),还有当前最流行的大模型常用的Transformer神经网络。不同模型的网络具有不同的结构和特点,适用于解决不同...
CNN(卷积神经网络)和Transformer是深度学习领域两种非常重要的架构,它们在多个方面存在显著区别: 一、架构设计方面 1. 核心组件 • CNN:核心组件是卷积层(Convolutional Layer)。卷积层通过卷积核(也称为滤波器)在输入数据上滑动,提取局部特征。例如,在图像处理中,一个3×3的卷积核在图像上滑动,每次覆盖3×3的像...
读完这本书,我终于搞懂了Transformer、BERT和GPT! 卷积神经网络 卷积神经网络CNN是一种人工神经网络,旨在处理和分析具有网格状拓扑结构的数据,如图像和视频。将CNN想象成一个多层过滤器,可处理图像以提取有意义的特征并进行推理预测。想象一下,假设我们有一张手写数字的照片,希望计算机能识别出这个数字。CNN的工作原理...
提出了轻量级Transformer编码器,降低了模型的计算和参数需求,同时保持高性能。通过CNN和Transformer提取的局部和全局特征经过交叉编码器融合模块融合,作为生成湖泊遮罩的统一特征输入。这种结构实现了高准确性和低计算成本的轻量级网络结构。 扫码添加小享,回复“融合新17” ...
由于复杂的注意力机制和模型设计,大多数现有的视觉 Transformer(ViT)在现实的工业部署场景中不能像卷积神经网络(CNN)那样高效地执行。这就带来了一个问题:视觉神经网络能否像 CNN 一样快速推断并像 ViT 一样强大? 近期一些工作试图设计 CNN-Transformer 混合架构来解决这个问题,但...
- SCTNet架构:提出了一种单分支卷积神经网络(CNN),该网络在训练时利用transformer作为语义分支来提取丰富的长距离上下文信息,而在推理时仅部署单分支CNN。 - CFBlock:设计了一种称为CFBlock(ConvFormer Block)的transformer-like CNN块,使用仅卷积操作模拟transformer块的结构,以学习transformer分支的语义信息。
一文弄懂CNN/RNN/GAN/Transformer等架构 1. 引言 本文旨在友好地介绍深度学习架构,包括卷积神经网络(CNN)、循环神经网络(RNN)、生成对抗网络(GAN)、transformer和encoder-decoder架构。 闲话少说,让我们直接开始吧。 2. 卷积神经网络 卷积神经网络(CNN)是一种人工神经网络,旨在处理和分析具有网格状拓扑结构的数据,...