论文来自微软的A Battle of Network Structures: An Empirical Study of CNN, Transformer, and MLP 背景 近期Transformer MLP系列模型的出现,增加了CV领域的多样性,MLP-Mixer的出现表明卷积或者注意力都不是模型性能优异的必要条件。不同架构的模型进行比较的过程中,会使用不同的正则化方法、训练技巧等,为了比较的公...
(3)由于transformer模型实际上是由残差模块和层归一化模块组合而成,并且层归一化模块位于两个残差模块...
总结比较 MLP:最简单的前馈网络,不处理序列数据。 CNN:通过局部感受野和参数共享,擅长处理图像。 RNN:擅长处理序列数据,但难以捕捉长序列中的依赖关系。 Transformer:利用自注意力机制高效处理序列数据,解决了RNN的长距离依赖 问题,适用于需要复杂关系理解的任务。发布...
Transformer:由于其自注意力机制,Transformer在处理序列数据(如自然语言)中的长距离依赖关系方面表现出色。在机器翻译、语言模型和文本生成等任务中取得了巨大成功。 MLP:MLP作为传统的深度学习模型,适用于各种结构化数据和传统机器学习任务。在金融领域的风险评估、销售预测和客户分类等任务中广泛应用。 在选择模型时,需要...
中科大&MSRA对三大神经网络架构的特性进行了分析,通过构建一个统一架构SPACH为基础对CNN、Transformer以及MLP进行对比挖掘得出:多阶段模型总是优于单阶段模型。 为分析不同架构的特性,作者首先构建了一个统一架构SPACH将Mixing做成可配置型,以此为基础上CNN、Transformer以及MLP进行挖掘得出:多阶段优于单阶段、局部建模非常...
ViT的兴起挑战了CNN的地位,随之而来的是MLP系列方法。三种架构各有特点,为了公平地比较几种架构,本文提出了统一化的框架SPACH来对比,得到了具有一定insight的结论。 背景 近期Transformer MLP系列模型的出现,增加了CV领域的多样性,MLP-Mixer的出现表明卷积或者注意力都不是模型性能优异的必要条件。不同架构的模型进行比较...
随着参数量的增加,模型最高精度先后由MLP、Conv、Transformer所主导。 结论2:局部建模非常重要 上表展示了具有局部建模以及去除局部建模的效果,可以发现使用卷积旁路的时候吞吐量略微降低,但是精度有显著提高。 结论3:MLP的细节分析 MLP性能不足主要源自于过拟合问题,可以使用两种机制来缓解这个问题。
众所周知,CV领域主流架构的演变过程是 MLP->CNN->Transformer 。MLP->CNN->Transformer 的演变之路难道现在要变成 MLP->CNN->Transformer->MLP ? 这难道就是学术“圈”的真谛吗? Mixer号称不使用卷积或自注意力机制,完全基于在空间位置或特征通道上重复应用的多层感知器(MLP),它只依赖基础的矩阵乘法操作、数据变...
【新智元导读】随着神经网络的发展,各种各样的模型都被研究出来,卷积、Transformer也是计算机视觉中国常用的模型,而最近清华大学发表了一篇survey,研究结果或许表明全连接层才是最适合视觉的模型,并将迎来新的AI范式转换! 多层感知机(MLP)或全连接(FC)网络是历史上第一个神经网络结构,由多层线性层和非线性激活叠加而成...
(1)对于 Transformer 和 MLP-Mixer,对抗训练可以全面提升其全部噪音鲁棒性和任务本身的效果; (2)在模型大小一致的前提下,对于自然噪音和系统噪音鲁棒性:CNN>Transformer>MLP-Mixer,对于对抗噪音鲁棒性,Transformer>MLP-Mixer>CNN; (3)对于一些轻量化的模型族,增加其模型大小或者增加训练数据并不能提升其鲁棒性等。