SINGLE_ATTENTION_VECTOR=Falseimportos os.environ['CUDA_VISIBLE_DEVICES']='0'os.environ["TF_KERAS"]='1'# 注意力机制defattention_3d_block(inputs):input_dim=int(inputs.shape[2])a=inputs a=Dense(input_dim,activation='softmax')(a)# 根据给定的模式(dim)置换输入的维度 例如(2,1)即置换输入...
lstm_out = Bidirectional(LSTM(128, return_sequences=True))(x) lstm_out = Dropout(0.3)(lstm_out) attention_mul = attention_block(lstm_out, n_input) attention_mul = Flatten()(attention_mul)#扁平层,变为一维数据 output = Dense(n_out, activation='sigmoid')(attention_mul) model = Model(i...
1.data为数据集,格式为excel,4个输入特征,1个输出特征,考虑历史特征的影响,多变量时间序列预测; 2.CNN_LSTM_AttentionNTS.m为主程序文件,运行即可; 3.命令窗口输出R2、MAE、MAPE、MSE和MBE,可在下载区获取数据和程序内容; 注意程序和数据放在一个文件夹,运行环境为Matlab2020b及以上。 注意程序和数据放在一个文...
1.data为数据集,格式为excel,单变量时间序列预测,输入为一维时间序列数据集; 2.CNN_LSTM_AttentionTS.m为主程序文件,运行即可; 3.命令窗口输出R2、MAE、MAPE、MSE和MBE,可在下载区获取数据和程序内容; 注意程序和数据放在一个文件夹,运行环境为Matlab2020b及以上。 4.注意力机制模块: SEBlock(Squeeze-and-Excit...
本文将介绍如何结合CNN、LSTM和Attention机制实现单变量时间序列预测。这种方法能够有效处理序列数据中的时空特征,结合了CNN在局部特征捕捉方面的优势和LSTM在时间依赖性处理上的能力。此外,引入注意力机制能够选择性关注序列中的关键信息,增强模型对细微和语境相关细节的捕捉能力。具体实现步骤如下:首先,读取...
本文提出了一种基于卷积神经网络结合注意力机制的长短记忆网络CNN-LSTM-Attention实现风电功率多输入单输出回归预测算法。该算法结合了卷积神经网络、长短记忆网络和注意力机制,能够有效地提取输入特征和建立时序关系,并对输入特征进行加权处理,从而提高预测精度。
AdeepLSTM-CNNbasedonself-attention mechanism with input data reduction for short-term load forecasting 方法:论文介绍了一个深度学习模型,该模型基于长短期记忆网络、卷积神经网络以及自注意力机制(self-attention mechanism,简称SAM)来进行短期负荷预测(STLF)。实验证明该模型在减少输入数据的同时提升了预测精度,且...
因此本文在CNN-LSTM的基础上引入注意力机制,建立CNN-LSTM-Attention货运量预测模型,将具有提取数据特征能力的CNN和处理时间序列表现优异的LSTM结合,以此用注意力机制分配概率权重补足CNN只能捕捉局部信息的短板,并验证该模型的预测准确性。 1研究方法 1.1卷积神经网络模型 卷积神经网络(CNN)是深度学习中的一种强大的网络...
利用该高创新算法对CNN-LSTM-Attention时序和空间特征结合-融合注意力机制的回归预测程序代码中的超参数...
本文提出了一种基于能量谷算法优化卷积神经网络结合注意力机制的长短记忆网络(EVO-CNN-LSTM-Attention)的风电功率多输入单输出回归预测模型。该模型采用能量谷算法优化卷积神经网络,增强了网络的特征提取能力;引入注意力机制,赋予模型对重要特征的关注能力;采用长短记忆网络,捕捉风电功率时序数据的长期依赖关系。实验结果表明,...