原理简介 一、递归预测原理 二、CNN-LSTM-Attention原理 数据输入格式 结果展示 部分代码展示 完整代码 以往的时间序列预测都是划分训练集测试集进行评估精度的,缺少对未来数据的预测(虽然论文里大多也都是这么做的)。后台有很多小伙伴在应用过程中实际需要利用模型在评估精度后输出预测未来的数据。因此,今天给大家带来...
3.采用混合CNN-LSTM模型,捕捉负荷模式中的时空相关性,提高预测精度。 Prediction of Remaining Useful Life of Aero-engines Based on CNN-LSTM-Attention 文章解析 准确预测航空发动机的剩余使用寿命(RUL)对于维护财务稳定和航空安全至关重要。本文提出了一种基于深度学习的RUL预测方法,通过卷积神经网络(CNN)、长短期记...
CNN+LSTM+Attention是一种深度学习模型,它结合了卷积神经网络(CNN)、长短期记忆网络(LSTM)和注意力机制(Attention)的优势,用于处理序列数据和时间序列预测任务。 这种模型因其强大的特征提取和序列建模能力,被广泛应用于各种时空数据的预测和分析任务,如短期负荷预测、航空发动机剩余使用寿命预测、股票价格预测和电机故障检...
lstm_out = Bidirectional(LSTM(128, return_sequences=True))(x) lstm_out = Dropout(0.3)(lstm_out) attention_mul = attention_block(lstm_out, n_input) attention_mul = Flatten()(attention_mul)#扁平层,变为一维数据 output = Dense(n_out, activation='sigmoid')(attention_mul) model = Model(i...
采用预训练-微调框架,先通过Attention-based CNN-LSTM模型提取原始股票数据的深层特征,再利用XGBoost模型进行微调。 使用ARIMA模型对股票数据进行预处理,然后将经过预处理的数据输入神经网络或XGBoost进行分析。 Machine Fault Detection Using a Hybrid CNN-LSTM Attention-Based Model ...
【基于CNN-LSTM-Attention 卷积长短期记忆神经网络结合注意力机制的多输入单输出回归预测模型】基于CNN-LSTM-Attention 卷积长短期记忆神经网络结合注意力机制的多输入单输出回归预测模型,预测效果如上,命令窗口输出R2、MAE、MAPE、MSE和MBE。基于CNN-LSTM-Attention 卷积长短期记忆神经网络的多输入单输出回归预测模型 CNN...
CNN-LSTM-Attention模型结合了CNN、LSTM和Attention三种技术的优势。首先,使用CNN提取时间序列中的局部特征;然后,将提取的特征输入到LSTM中,捕捉时间序列中的长期依赖关系;最后,通过注意力机制对LSTM的输出进行加权,使模型能够关注与当前预测最相关的历史信息。具体来说,模型的流程如下: ...
我们所提出的基于注意力机制的CNN-LSTM与XGBoost混合模型简称为AttCLX。结果表明,该模型更为有效,预测精度相对较高,能够帮助投资者或机构做出决策,实现扩大收益和规避风险的目的。 基于序列数据的深度学习 (一)基本前馈神经网络(FFNN) 在基本前馈神经网络(FFNN)中,当前时刻的输出仅由当前时刻的输入决定,这限制了FFNN...