CEEMDAN +组合预测模型(CNN-LSTM + ARIMA) - 知乎 (zhihu.com) 前言 本文基于前期介绍的风速数据(文末附数据集),介绍一种多特征变量序列预测模型CNN-LSTM,以提高时间序列数据的预测性能。该数据集一共有天气、温度、湿度、气压、风速等九个变量,通过滑动窗口制作数据集,利用多变量来预测风速。 LSTF(Long
注:CNN+LSTM是一种将卷积神经网络(CNN)和LSTM结合起来的模型。CNN用于提取输入数据的空间特征,LSTM用于建模时序关系。CNN-LSTM常用于处理图像序列、视频序列等具有时空信息的数据。在CNN-LSTM可以学习到输入数据中的空间信息和时序依赖关系,并在许多任务中取得了良好的效果。 二、实现过程 2.1 读取数据集 df=pd.read...
读取数据->生成标签(下一天收盘价)->分割数据集->LSTM模型预测->可视化->预测结果评估 LSTM网络结构: 函数介绍: 1、generate_label 生成标签(下一天收盘价) 2、generate_model_data 分割数据集 3、evaluate 结果评估 4、lstm_model LSTM预测模型 5、main 主函数(含可视化) 可视化输出: 训练集测试集拟合效果: ...
方法:论文探索应用双向卷积神经网络-长短期记忆网络(CNN-LSTM)架构来预测股票价格,特别关注CNXIT(Nifty IT)股票指数,以研究深度学习技术在捕捉历史股票价格数据中的复杂时间依赖性和空间模式方面的潜力。通过综合文献回顾,介绍Bidirectional CNN-LSTM模型及其数据预处理步骤、模型架构和训练过程。清理和准备CNXIT历史股票价格...
融合注意力机制的cnn-lstm模型预测蒸发皿蒸发量 基于气象数据预测蒸发量对于农业灌溉和水资源管理有重要意义。传统模型在复杂气象要素联动分析中存在局限,融合注意力机制的CNN-LSTM模型通过特征提取与时序建模的结合,有效提升了预测精度。以下从模型构建到应用实施进行完整说明。模型采用四层结构设计。输入层接收温度、湿度...
我们是否可以通过气象图来预测降水量呢?今天我们来使用CNN和LSTM进行一个有趣的实验。 我们这里使用荷兰皇家气象研究所(也称为KNMI)提供的开放数据集和公共api,来获取数据集并且构建模型预测当地的降水量。 数据收集 KNMI提供的数据集,我们假设气象雷达产生的信号在反射时会被降水(雨、雪、冰雹等)反射。由雷达捕获的...
下面我们开始使用三种不同的时间序列算法:SARIMA、XGBoost和CNN-LSTM,进行建模并比较。 对于所有三个模型,都使用预测下一个数据点进行预测。Walk-forward验证是一种用于时间序列建模的技术,因为随着时间的推移,预测会变得不那么准确,因此更实用的方法是在实际...
最后将各个模型的预测效果绘制成柱状图对比如下: 很遗憾对CNN+LSTM添加两种注意力机制都没有取得更好的效果,当然这并不能说明注意力机制不适合股指收益率预测,采用不同层组合、不同参数可能会取得完全不同的效果。本文旨在抛砖引玉,有兴趣的读者可以自行尝试。
cnn 温度预测 lstm温度预测模型,前言:本例使用的是一个天气时间序列数据集,由德国耶拿的马克思普朗克生物地球化学研究所的气象站记录,这个例子作为初学者必看的例子之一,在这个数据集中,每十分钟记录14个不同的量(比如风向、湿度等),其中包含多年的记录。最原始的
2.基于LSTM预测股票价格(长短期记忆神经网络) 基于LSTM预测股票价格(简易版) 数据集: 沪深300数据 数据特征: 只选用原始数据特征(开盘价、收盘价、最高价、最低价、交易量) 时间窗口: 15天 代码流程: 读取数据->生成标签(下一天收盘价)->分割数据集->LSTM模型预测->可视化->预测结果评估 ...