BiLSTM能够同时处理过去和未来的信息,从而更准确地捕捉风电功率的时序变化。 结构:由前向LSTM和后向LSTM组成,两者结合可以获取更全面的时序信息。 3.注意力机制(Attention) 作用:用于加权整合CNN和BiLSTM的输出。注意力机制可以动态地调整不同特征的重要性,从而提高模型的预测精度。 实现方式:通过计算权重矩阵,将CNN和...
1. 算法原理 定义与描述 CNN-GRU模型是卷积神经网络(CNN)与门控循环单元(GRU)的结合体。CNN擅长从输入数据中提取空间特征,而GRU用于处理时间序列,捕捉序列数据中的时间依赖性。该组合特别适用于需要同时分析空间和时间特征的数据,如图像字幕生成、视频分析等任务。 工作原理 输入层:首先输入数据(如图像或序列)进入CN...
现在,让我们来总结一下KOA-CNN-biLSTM-attention算法的步骤: 数据预处理:对输入数据进行标准化、归一化等预处理操作,以提高模型的稳定性和收敛速度。 构建卷积神经网络:设计合适的卷积层、池化层和全连接层,并使用ReLU等激活函数进行非线性映射。 引入biLSTM:在卷积神经网络的末尾添加一个或多个biLSTM层,以更好地...
模型描述 Matlab实现CNN-BiLSTM-Attention多变量时间序列预测 1.data为数据集,格式为excel,4个输入特征,1个输出特征,考虑历史特征的影响,多变量时间序列预测; 2.CNN_BiLSTM_AttentionNTS.m为主程序文件,运行即可; 3.命令窗口输出R2、MAE、MAPE、MSE和MBE,可在下载区获取数据和程序内容; 注意程序和数据放在一个文...
本文提出了一种基于三角拓扑聚合算法优化多头注意力机制的卷积神经网络结合双向长短记忆神经网络(TTAO-CNN-biLSTM-Multihead-Attention)的温度预测模型。该模型利用三角拓扑聚合算法对多头注意力机制进行优化,增强了模型对温度序列中局部和全局特征的提取能力。此外,将双向长短记忆神经网络引入模型中,提高了模型对温度序列中...
1.Matlab实现GWO-CNN-BiLSTM-selfAttention灰狼算法优化卷积双向长短期记忆神经网络融合自注意力机制多变量多步时间序列预测,灰狼算法优化学习率,卷积核大小,神经元个数,以最小MAPE为目标函数; 自注意力层 (Self-Attention):Self-Attention自注意力机制是一种用于模型关注输入序列中不同位置相关性的机制。它通过计算每...
BiLSTM-Attention分类模型- 与CNN分类模型相似,适用于复杂程度较高的场景,同时能够更好地捕捉文本里的长期依赖。 融合模型(集成学习)- 可融合CNN,BiLSTM-Attention,CNN-BiLSTM等机制的集成学习模型,适用各类文本分类场景,训练时间较长。 在此之上,针对部分用户业务场景的特殊要求,壹鸽可基于RapidMiner平台为深度定制专项...
本文基于Python仿真的电能质量扰动信号,进行快速傅里叶变换(FFT)的介绍与数据预处理,最后通过Python实现基于FFT的CNN-BiLSTM-CrossAttention模型对电能质量扰动信号的分类。 部分扰动信号类型波形图如下所示: 模型整体结构 模型整体结构如下所示,一维扰动信号经过FFT变换的频域特征以及信号本身的时域特征分别经过CNN卷积池化操...