可以看到,在我们的数据集上,CNN-BiLSTM-Attention模型表现最好,R2达到了0.93+,其次为没有加注意力机制的CNN-BiLSTM,R2为0.89,再次为没有CNN提取特征的BiLSTM模型和LSTM,这也说明我们的消融实验是非常成功的,能够增强文章中选用模型的说服力。 当然,不同数据集效果肯定有所不同,大家也可以自行调整参数获得更好的...
往期精彩内容: 时序预测:LSTM、ARIMA、Holt-Winters、SARIMA模型的分析与比较 - 知乎 (zhihu.com) 建模先锋:风速预测(八)VMD-CNN-Transformer预测模型 CEEMDAN +组合预测模型(BiLSTM-Attention + ARIMA) - 知…
实验结果表明,CNN-BiLSTM-Attention 模型在所有数据集上都取得了优于传统方法的分类性能。 结论 本文提出的 CNN-BiLSTM-Attention 模型将卷积神经网络、双向长短记忆神经网络和注意力机制相结合,实现了数据分类任务的高精度和鲁棒性。该模型充分利用了不同模型的优势,在多个数据集上取得了优异的性能。未来,我们将继续...
总结一下,SSA-CNN-BILSTM-Attention模型是一种将卷积神经网络、双向长短期记忆网络和注意力机制相结合的模型。它在图像分类任务中具有较高的准确性和性能。通过使用麻雀算法对模型进行优化,可以进一步提高模型的性能。这个模型在深度学习领域具有重要的研究价值,并有望在实际应用中取得更好的效果。 📣 部分代码 ⛳...
50个epoch,准确率近100%,用FFT+CNN-BiLSTM-CrossAttention融合网络模型分类效果显著,模型能够充分提取电能质量扰动信号的空间和时序特征和频域特征,收敛速度快,性能优越,精度高,交叉注意力机制能够对不同特征之间的关联程度进行建模,从扰动信号频域、时域特征中属于提取出对模型识别重要的特征,效果明显。
时序预测任务中实现CPO-CNN-BiLSTM-Attention、CNN-BiLSTM-Attention、CPO-CNN-BiLSTM、CNN-BiLSTM四模型对比多变量时序预测这四个模型,并对比它们的性能,我们需要先构建每个模型,然后使用相同的数据集进行训练,并评估它们的预测结果。CPO优化参数为:隐藏层节点数,学习率,正则化系数 ...
1.Matlab实现GWO-CNN-BiLSTM-selfAttention灰狼算法优化卷积双向长短期记忆神经网络融合自注意力机制多变量多步时间序列预测,灰狼算法优化学习率,卷积核大小,神经元个数,以最小MAPE为目标函数; 自注意力层 (Self-Attention):Self-Attention自注意力机制是一种用于模型关注输入序列中不同位置相关性的机制。它通过计算每...
1.应用于糖尿病预测的CNN‑BiLSTM‑Attention融合模型训练方法,其特征在于,包括 如下步骤: 获得糖尿病数据并进行预处理,构建数据集,将数据集按预设比例划分为训练集和测 试集; 将训练集输入至CNN‑BILSTM‑Attention融合模型中采用Adam算法进行训练,迭代更新 ...
将本文构建的结合Attention和ResNet的BiLSTM-CNN短期负荷预测模型,采用某电力数据集进行实验并与5种典型的预测模型进行比较,结果表明本文提出的模型在短期电力负荷预测上有更高的预测精度。 本文创新点如下:设计了一种结合Attention和ResNet的BiL...
本篇文章对《基于注意力机制和CNN-BiLSTM模型的航空发动机剩余寿命预测》这篇论文里的模型进行复现,作者张加劲。 模型结构 下面是对不含attention层的模型进行实现。 defModel(input_size, num_output): cv1 = nn.Sequential(Permute(), nn.Conv1d(in_channels=input_size, out_channels=10, kernel_size=10, ...