在常用的检测基准上,SOTA的方法一般都是anchor_based 的。 双阶段方法。Faster R-CNN 的出现确立了双阶段、anchor-based 检测器的主导地位。Faster R-CNN 由一个 RPN 网络和一个 region-wise 的预测网络(R-CNN)组成,然后预测目标。之后,人们又提出了许多的算法来提升其表现,包括结构重新设计、注意力机制、多...
我们将使用的具体实现方式是“Grad-CAM: visual explanations fromdeep networksvia gradient-based localization”这篇论文中描述的方法。这种方法非常简单:给定一张输入图像,对于一个卷积层的输出特征图,用类别相对于通道的梯度对这个特征图中的每个通道进行加权。直观上来看,理解这个技巧的一种方法是,你是用“每个通道...
二、LeNet-5的手写数字识别 LeNet-5出自论文Gradient-Based Learning Applied to Document Recognition,对MNIST数据集(mnist数据集下载地址)的分识别准确度可达99.2%。其网络结构为: 使用深度学习工具tensorflow,编写LeNet-5结构,并对mnist手写数字集(mnist数据集下载地址)进行训练。其模型训练的python代码如下: # -*-...
pred_boxes = bbox_transform_inv(boxes, box_deltas) pred_boxes = clip_boxes(pred_boxes, im.shape) 可知原始的回归结果是一个偏移量,它需要通过bbox_transform_inv反投影到图像空间。test.py脚本中还包含函数apply_nms,用于对网络输出的结果进行非极大值抑制。 2.6 tools 目录 该目录包含的就是最高层的...
近十年来,使用手工启发式的顺序匹配已经成为基于路径的位置识别的标准实践,为成对增强的相似结果。然而,在短时间窗口搜索时,这些算法的查全率性能显著下降,同时对自主导航研究的集要求较高的计算和存储成本。在这里,受即使没有视觉也能稳健导航时空尺度的生物系统的影响,我们开发了一种联合视觉和位置表示学习技术,通过顺...
( '--clip-vis-length', default=8, type=int, help='Number of draw frames per clip.') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, default={}, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into ...
View the latest news and breaking news today for U.S., world, weather, entertainment, politics and health at CNN.com.
Also, CNN Pipeline has identified an issue whereby a small percentage of Mac users may experience difficulty accessing some video clips through our search and browse features. If a clip has not been requested for more than a week, it will no longer be cached and has to be requested from th...
(BEGIN VIDEO CLIP) TEXT: CUOMO PRIME TIME. (END VIDEO CLIP) CUOMO: All right, let's start facts first. The enemy, the virus, does have a jump on us, and let's be straight about it. We know why. (BEGIN VIDEO CLIP) DONALD TRUMP, PRESIDENT OF THE UNITED STATES: When you have 15...
The CNN-based false information detection model Spotting a misleading video would ultimately require falsehood detection of the video clip, and in this paper, we adopted a CNN-based model for misleading video detection. Compared with other neural network-based models that import datasets into the ne...