caffe的model文件在(2)。说实话,这个model的意义比后面那些model都大很多,首先它证明了CNN在复杂模型下的有效性,然后GPU实现使得训练在可接受的时间范围内得到结果,确实让CNN和GPU都大火了一把,顺便推动了有监督DL的发展。 (2)https://github.com/BVLC/caffe/blob/master/models/bvlc_alexnet/deploy.prototxt 模型...
二、CNN模型结构 接下来我们通过一个情境来理解CNN的全流程: 假设我们现在有一款智能鉴定APP,主要进行艺术品鉴定。我们要通过APP判断其中一张图片是不是古董,现在我们来了解下APP是怎么工作的吧。 输入层: 用户上传了一张古董瓷瓶照片,这张照片就是进入CNN系统的”原材料”,输入层的作用就是接收这张图片数据,并将...
有无Batch Normalization[1] 使用图 1 的简易 CNN 结构作对比实验,其中一个在每个卷积层的后面都接一个 BN 层,而另一个则完全不使用 BN 层,使用同样对数据进行训练后,测试结果如下: 数据得出的结果显然可以看出加入了 BN 后使得网络对测试集的准确率更高了,所以可以确定我们的模型应该给每层都加上 BN。但是...
这里给出完整的GoogleNet模型结构: 这里补充两个注意点: 1. 对于不同的卷积核,要取不同的滑动步长,以使得他们输出的特征图大小相同,便于后一步的操作; 2. 在CNN中,1*1的卷积核最主要的作用在于改变通道数,比如,原图像 3*64*64的rgb,通过5个1X1卷积核就变成了5*64*64.用5个卷积核代替了原来RGB三通道的...
经典CNN模型LeNet解读 - 知乎 (zhihu.com) 1.2 模型结构 ● Convolutions、Subsampling(Pooling+Sigmoid(激活函数))● Convolutions、Subsampling(Pooling+Sigmoid)● FC, FC● Gaussian connections 1.3 应用场景 ● 字符分类 2. AlexNet(2012) 2.1 参考 ● Paper:ImageNet Classification with Deep Convolutional Neur...
CNN在很多领域都表现优异,精度和速度比传统计算学习算法高很多。特别是在计算机视觉领域,CNN是解决图像分类、图像检索、物体检测和语义分割的主流模型。CNN是一种层次模型,输入的是原始的像素数据。CNN通过卷积(convolution)、池化(pooling)、非线性激活函数(non-linear activation function)和全连接层(fully connected ...
CNN经典模型分析 🐬 目录: 一、CNN概论 二、model分析 LeNet5 AlexNet VggNet GoogleNet ResNet 三、参考资料 一、CNN概论 如图所示:人工智能最大,此概念也最先问世;然后是机器学习,出现的稍晚;最后才是深度学习。其中CNN,RNN,GANs,RL是深度学习中非常典型的算法,如下表所示: ...
参数量一般指可学习参数的数量,在CNN中主要有卷积层(Conv),批归一化层(BN),和全连接层(FC)含有可学习参数。 1. 卷积层参数量: (1)普通卷积层的参数量: 其中 是输出通道数, 是输入通道数, 是卷积核的宽, 是卷积核的高。 (2)分组卷积的参数量: ...
1. CNN模型发展 1.1 AlexNet 卷积核一定越大越好吗?-- 小卷积核 分组卷积首先在在AlexNet中出现,还用到一些非常大的卷积核,比如11×11、5×5卷积核,先前的观念是:卷积核越大,receptive field(感受野)越大,获取到的图片信息越多,因此获得的特征越好。但是大的卷积核会导致计算量的暴增,不利于模型深度的增加,...
详细介绍一些CNN模型的设计理论和关键设计点 卷积神经网络设计史上的主要里程碑:模块化、多路径、因式分解、压缩、可扩展 一般来说,分类问题是计算机视觉模型的基础,它可以延申解决更复杂的视觉问题,例如:目标检测的任务包括检测边界框并对其中的对象进行分类。而分割的任务则是对图像中的每个像素进行分类。