计算资源充足: Transformer可能是更好的选择,尤其是对于长序列数据。 计算资源有限: CNN或RNN可能更适合,取决于任务类型。 结论 在选择深度学习模型时,需要根据任务的特性、数据类型和计算资源等多方面因素进行综合考虑。CNN、RNN和Transformer各有优缺点,选择适合自己任务需求的模型将有助于提高模型性能。希望本文对读者...
而视觉 Transformer(如 ViT)依赖于更加灵活的自注意力层,最近在一些图像分类任务上性能已经超过了 CNN,但 ViT 对样本的需求量更大。 来自Facebook 的研究者提出了一种名为 ConViT 的新计算机视觉模型,它结合了两种广泛使用的 AI 架构——卷积神经网络 (CNN) 和 Transformer,该模型取长补短,克服了 CNN 和 Trans...
给定一些数字,Softmax函数就能将任意数字转化为概率。比如,我们选定数字 -1、0、3和5。首先,我们需要计算e的指定数字次方,然后将其所有结果相加,当作分母。 最后,e的指定数字次方的值就作为分子,由此计算可能性。 而以MNIST CNN为例,将使用带有10个节点的softmax层作为CNN的最后一层,每个数字代表一个数字。层中...
计算资源充足: Transformer可能是更好的选择,尤其是对于长序列数据。 计算资源有限: CNN或RNN可能更适合,取决于任务类型。 结论 在选择深度学习模型时,需要根据任务的特性、数据类型和计算资源等多方面因素进行综合考虑。CNN、RNN和Transformer各有优缺点,选择适合自己任务需求的模型将有助于提高模型性能。希望本文对读者...
3.2.2 缺点: 计算成本较高: 相比于CNN和RNN,Transformer的计算成本较高。 对序列长度敏感: 随着序列长度增加,模型的计算量也会增加。 3.3 Transformer的适用场景 适用于处理长序列数据,如机器翻译、文本生成等任务。 第四部分:如何选择? 4.1 数据类型和任务 图像数据: 选择CNN。 序列数据: 选择RNN或Transformer,取...