为了实现平移不变性,卷积神经网络(CNN)等深度学习模型在卷积层中使用了卷积操作,这个操作可以捕捉到图像中的局部特征而不受其位置的影响。 三、什么是卷积? 在卷积神经网络中,卷积操作是指将一个可移动的小窗口(称为数据窗口,如下图绿色矩形)与图像进行逐元素相乘然后相加的操作。这个小窗口其实是一组固定的权重,...
也就是说每个神经元用的是同一个卷积核去卷积图像。这样L1层我们就只有100个参数。但是这样,只提取了图像一种特征?如果需要提取不同的特征,就加多几种卷积核。所以假设我们加到100种卷积核,也就是1万个参数。 每种卷积核的参数不一样,表示它提出输入图像的不同特征(不同的边缘)。这样每种卷积核去卷积图像就...
卷积层是CNN中最基础的结构,由许多卷积核(filter)组成,每个卷积核是一个针对局部区域的滤波模板,模板对应区域称之为感受野。卷积核以一定步长在图像矩阵上滑动,每到一个位置,卷积核对这个位置进行卷积操作,用图像矩阵上的值乘以卷积核中对应位置的权重,求和后得到卷积后的值。下图是一个 的卷积核以1为步长在一个 ...
卷积神经网络(Convolutional Neural Network,简称CNN)是一种专门设计用于处理网格状数据(如图像)的深度学习模型。CNN在图像识别、目标检测等领域取得了巨大的成功。以下是对CNN原理的详细解释,包括基本概念、卷积层、池化层、全连接层以及整体工作流程。 1. 基本概念 CNN是一种包含卷积计算且具有深度结构的前馈神经网络。
输入层比较简单,这一层的主要工作就是输入图像等信息,因为卷积神经网络主要处理的是图像相关的内容,但是我们人眼看到的图像和计算机处理的图像是一样的么? 很明显是不一样的,对于输入图像,首先要将其转换为对应的二维矩阵,这个二位矩阵就是由图像每一个像素的像素值大小组成的,我们可以看一个例子,如下图所示的手写...
简介:【6月更文挑战第14天】本文深度解析卷积神经网络(CNN)的工作原理。CNN由输入层、卷积层、激活函数、池化层、全连接层和输出层构成。卷积层通过滤波器提取特征,激活函数增加非线性,池化层降低维度。全连接层整合特征,输出层根据任务产生预测。CNN通过特征提取、整合、反向传播和优化进行学习。尽管存在计算量大、参...
在CNN中,每个神经元只负责处理输入图像的一个局部区域,并通过卷积运算提取局部特征。这种局部特征提取的方式可以有效地减少参数数量,提高模型的泛化能力。二、工作原理卷积神经网络的工作原理可以分为以下几个步骤: 输入层:将原始图像作为输入,通过卷积运算,提取出图像中的局部特征。 卷积层:通过卷积核与输入图像进行...
一、从神经网络到卷积神经网络 我们知道神经网络的结构是这样的: 那卷积神经网络跟它是什么关系呢? 其实卷积神经网络依旧是层级网络,只是层的功能和形式做了变化,可以说是传统神经网络的一个改进。比如下图中就多了许多传统神经网络没有的层次。 1. 定义 ...
首先要明确,卷积神经网络【CNN】(以下用CNN代称)设计的初衷是为了让计算机处理和识别图像,目前应用于几乎所有的涉及机器视觉的领域,它基于提取特征,特征匹配的原理,来识别图像或者其他任何能够转化成计算机可认读数据的事务。 首先,CNN的基本运行过程如下图所示,这里我们以【识别X和O】为例 ...