中科大&MSRA对三大神经网络架构的特性进行了分析,通过构建一个统一架构SPACH为基础对CNN、Transformer以及MLP进行对比挖掘得出:多阶段模型总是优于单阶段模型。 为分析不同架构的特性,作者首先构建了一个统一架构SPACH将Mixing做成可配置型,以此为基础上CNN、Transformer以及MLP进行挖掘得出:多阶段优于单阶段、局部建模非常...
本文展示的工作通过一个统一的CNN、Transformer和MLP框架,进行严格控制的实验,填补了这一空白。 作者首先开发了一个如图1所示的,称之为SPACH的统一框架。其大部分来自于近期Transformer和MLP架构的应用。而且由于卷积可以被匹配到该框架下,因此其训练优化的过程非常稳定。SPACH包含一个即插即用的mixing块,其可以由卷积层...
本文针对序列化推荐问题,通过一系列分析实验发现该场景下滤波算法可以减少该过拟合问题并极大提升Transformer模型的效果,且在Transformer架构基础上将multi-head attention替换为频域下的MLP层,可以模拟滤波机制并进一步提升模型效果。最终我们提出了FMLP-Rec (Filter-enhanced MLP approach for sequential recommendation),一个纯...
深入思考CNN、Transformer与MLP 中科大&MSRA对三大神经网络架构的特性进行了分析,通过构建一个统一架构SPACH为基础对CNN、Transformer以及MLP进行对比挖掘得出:多阶段模型总是优于单阶段模型。 为分析不同架构的特性,作者首先构建了一个统一架构SPACH将Mixing做成可配置型,以此为基础上CNN、Transformer以及MLP进行挖掘得出:多...
【核心】MLP-Mixer,一个纯MLP(多层感知器)架构,成功挑战了Transformer与CNN,在图像分类任务上展现出竞争力。【拓展描述】MLP-Mixer就像是一个“混搭大师”,它通过token-mixing和channel-mixing两层MLP,巧妙地实现了空间位置和特征通道的信息交流,从而在没有卷积和自注意力机制的情况下,也能在图像分类等任务上大放...
CNN、Transformer和MLP各有其特点和优势,选择哪种架构取决于具体任务的需求。CNN适合处理具有空间结构的数据,如图像和视频;Transformer适用于序列数据,如文本;MLP则在处理分类和回归任务时表现良好。未来展望- 混合架构:将不同架构的优势结合起来,用于解决更复杂的任务。-...
本文是中科大&MSRA在DNN的CNN、Transformer以及MLP三大流派纷争方面的一点深入思考。为分析不同架构的特性,作者首先构建了一个统一架构SPACH将Mixing做成可配置型,以此为基础上CNN、Transformer以及MLP进行挖掘得出:多阶段优于单阶段、局部建模非常重要以及CNN与Transformer的互补性。基于所挖掘特性构建了一种CNN与Transformer...