循环神经网络(RNN)也是常用的深度学习模型之一(如图2-9所示),就像CNN是专门用于处理网格化数据(如一个图像)的神经网络,RNN是一种用于处理序列数据的神经网络。 如音频中含有时间成分,因此音频可以被表示为一维时间序列;语言中的单词都是逐个出现的,因此语言的表示方式也是序列数据。RNN在机器翻译、语音识别等领域中均...
图2-8展示了CNN的结构形式,一个神经元以三维排列组成卷积神经网络(宽度、高度和深度),如其中一个层展示的那样,CNN的每一层都将3D的输入量转化成3D的输出量。 ▲图2-8 CNN的结构形式 03 循环神经网络 循环神经网络(RNN)也是常用的深度学习模型之一(如图2-9所示),就像CNN是专门用于处理网格化数据(如一个图像)...
1. 卷积神经网络(CNN) CNN无疑是图像处理领域的佼佼者,它能够自动从图像中提取关键特征,无论是用于图像分类还是目标检测,都能展现出不俗的实力。例如,它能帮助我们识别照片中的宠物种类或是人脸。 2. 循环神经网络(RNN) RNN在处理序列数据方面表现出色,无论是文本、语音还是时间序列,它都能轻松应对。它擅长捕捉...
一、图神经网络(Graph Neural Networks, GNNs)概述 图神经网络是一类用于处理图结构数据的神经网络。与传统的深度学习模型(如卷积神经网络CNN和循环神经网络RNN)不同,GNNs能够捕获图数据中的节点特征、边特征以及图的整体结构信息。这使得GNNs在社交网络分析、推荐系统、生物信息学等领域具有广泛的应用。 二、DGL(Deep ...
2. 描述卷积神经网络(CNN)的基本结构。3. 解释什么是对抗网络(GAN),并描述其应用场景。4. 简述循环神经网络(RNN)的基本原理。5. 描述如何使用TensorFlow框架进行深度学习模型训练。6. 解释什么是强化学习,并描述其应用场景。7. 请列举三种常用的自然语言处理(NLP)技术。8. 描述如何使用Python中的TensorFlow库进行...
▲图2-8 CNN的结构形式 03 循环神经网络 循环神经网络(RNN)也是常用的深度学习模型之一(如图2-9所示),就像CNN是专门用于处理网格化数据(如一个图像)的神经网络,RNN是一种用于处理序列数据的神经网络。 如音频中含有时间成分,因此音频可以被表示为一维时间序列;语言中的单词都是逐个出现的,因此语言的表示方式也是序...
▲图2-8 CNN的结构形式 03 循环神经网络 循环神经网络(RNN)也是常用的深度学习模型之一(如图2-9所示),就像CNN是专门用于处理网格化数据(如一个图像)的神经网络,RNN是一种用于处理序列数据的神经网络。 如音频中含有时间成分,因此音频可以被表示为一维时间序列;语言中的单词都是逐个出现的,因此语言的表示方式也是序...
▲图2-8 CNN的结构形式 03 循环神经网络 循环神经网络(RNN)也是常用的深度学习模型之一(如图2-9所示),就像CNN是专门用于处理网格化数据(如一个图像)的神经网络,RNN是一种用于处理序列数据的神经网络。 如音频中含有时间成分,因此音频可以被表示为一维时间序列;语言中的单词都是逐个出现的,因此语言的表示方式也是序...
▲图2-8 CNN的结构形式 03 循环神经网络 循环神经网络(RNN)也是常用的深度学习模型之一(如图2-9所示),就像CNN是专门用于处理网格化数据(如一个图像)的神经网络,RNN是一种用于处理序列数据的神经网络。 如音频中含有时间成分,因此音频可以被表示为一维时间序列;语言中的单词都是逐个出现的,因此语言的表示方式也是序...