从语义特征提取能力:Transformer显著超过RNN和CNN,RNN和CNN两者能力差不太多。 长距离特征捕获能力:CNN极为显著地弱于RNN和Transformer,Transformer微弱优于RNN模型,但在比较远的距离上(主语谓语距离大于13),RNN微弱优于Transformer,所以综合看,可以认为Transformer和RNN在这方面能力差不太多,而CNN则显著弱于前两者。这部...
Transformer结构是在论文《Attention is All You Need》中提出的的模型,如上图所示。图中红框内为Encoder框架,黄框内为Decoder框架,其均是由多个Transformer Block堆叠而成的。这里的Transformer Block就代替了我们之前提到的LSTM和CNN结构作为了我们的特征提取器,也是其最关键的部分。更详细的示意图如下图所示。我们...
CNN可以通过卷积层提取出具有空间特征的特征表示,例如边缘、角点等,这些特征表示可以用于图像分类、目标检测、人脸识别等任务。RNN可以通过循环层提取出具有时序特征的特征表示,例如序列中的依赖关系和上下文信息,这些特征表示可以用于文本分类、语音识别、音乐生成等任务。Transformer可以通过多头注意力机制提取出具有上下文关联...
Transformer块在各种视觉任务中取得了优异的成绩,然而Transformer块的推理速度比TensorRT和CoreML上的BottleNeck块要慢得多,因为其注意力机制比较复杂,这在大多数现实工业场景中是难以承受的。 为了克服上述几种块的问题,该研究提出了Next Convolution Block(NCB),它在保持BottleNeck块的部署优势的同时获得了Transformer块的...
本文将从什么是CNN?什么是RNN?什么是LSTM?什么是Transformer?四个问题,简单介绍神经网络结构。 神经网络结构 一、什么是CNN 卷积神经网络(CNN):通过卷积和池化操作有效地处理高维图像数据,降低计算复杂度,并提取关键特征进行识别和分类。 网络结构 卷积层:用来提取图像的局部特征。
vision transformer可以提取全局特征 cnn可以提取低维特征 是真的吗 cnn提取图像特征,CNN小结目录CNN特征提取过程(卷积核描述的是特征信息,此特征可能就是原图像中的某些像素,但是卷积核并不找相似的地方在原始图像的哪里,所以需要将卷积核不断地滑动,得到的featuremap中,
这里要澄清一下,本文所说的Transformer特征抽取器并非原始论文所指。我们知道,“Attention is all you need”论文中说的的Transformer指的是完整的Encoder-Decoder框架,而我这里是从特征提取器角度来说的,你可以简单理解为论文中的Encoder部分。因为Encoder部分目的比较单纯,就是从原始句子中提取特征,而Decoder部分则功能相...
这里要澄清一下,本文所说的Transformer特征抽取器并非原始论文所指。我们知道,“Attention is all you need”论文中说的的Transformer指的是完整的Encoder-Decoder框架,而我这里是从特征提取器角度来说的,你可以简单理解为论文中的Encoder部分。因为Encoder部分目的比较单纯,就是从原始句子中提取特征,而Decoder部分则功能相...
具体来说,DeMT由可变形混合器编码器和任务感知transformer解码器组成。受可变形卷积网络在视觉任务中的成功激励,本文的可变形混合器编码器基于更有效的采样空间位置和信道位置混合(即变形特征),为每个任务学习不同的变形特征。它学习多个变形特征,突出显示与不同任务相关的更多信息区域。在任务感知transformer解码器中,多...