我们将经过2D-CNN处理后的特征图输入到LSTM网络中,LSTM模型的结构如图4所示。
2. 算法结构 模块组成 卷积模块(CNN):负责提取空间特征。 时间序列处理模块(GRU):处理序列特征,学习时间依赖。 全连接层:将提取的特征进行组合和映射,输出结果。 流程图 3. 优点与缺点 优点 特征提取能力强:CNN可以高效提取数据的空间特征,GRU捕捉时间特征,两者结合大幅提高模型表现。 计算效率高:GRU相较于LSTM,...
对输入数据进行卷积神经网络(CNN)处理,提取其特征表示。LSTM网络。将卷积网络提取的特征序列输入长短期记忆神经网络(LSTM),将其转化为单一输出。输出LSTM网络的预测结果。 在该算法中,卷积网络用于提取输入数据的特征,LSTM网络将卷积网络提取的特征序列转化为单一输出,并保留其时间序列信息,从而能够更好地预测未来的结果。
我们在第一个版本的栈式网络的基础上,加入一条新的路径:除上一层LSTM输出之外,将前层LSTM的输入到隐层的映射作为的一个新的输入,同时加入一个线性映射去学习一个新的变换。 3、双向循环神经网络(Bidirectional Recurrent Neural Network) 在LSTM中,t时刻的隐藏层向量编码了到t时刻为止所有输入的信息,但t时刻的LST...
LSTM是一种能够处理序列数据的循环神经网络模型。它通过门控机制来记忆和遗忘之前的信息,并根据当前的输入来预测下一个输出。LSTM在处理时序数据时表现出色,尤其适用于自然语言处理和语音识别等任务。 在本文的算法中,我们将CNN和LSTM结合起来,以利用它们各自的优势来处理数据分类预测问题。具体的步骤如下: ...
2-项目流程解读 3-加载词向量特征 4-正负样本数据读取 5-构建LSTM网络模型 6-训练与测试效果 项目实战:LSTM时间序列预测任务 2-网络结构与参数定义 3-构建LSTM模型 4-训练模型与效果展示 5-多序列预测结果 6-股票数据预测 7-数据预处理 8-预测结果展示 模块三:GAN对抗生成网络 02.对抗生成网络形象解释 03.对...
(1)将卷积神经网络(CNN)和长短期记忆人工神经网络(LSTM)相结合,提出卫星-雨量站深度融合模型。 (2)以“热带降雨测量任务”(TRMM)卫星降雨数据和中国雨量站资料为例,通过与卷积神经网络(CNN)、长短期记忆人工神经网络(LSTM)、多层感知人工神经网络(MLP)的模型比较,验证CNN-LSTM模型的有效性。
2.基于LSTM预测股票价格(长短期记忆神经网络) 基于LSTM预测股票价格(简易版) 数据集: 沪深300数据 数据特征: 只选用原始数据特征(开盘价、收盘价、最高价、最低价、交易量) 时间窗口: 15天 代码流程: 读取数据->生成标签(下一天收盘价)->分割数据集->LSTM模型预测->可视化->预测结果评估 ...