本文主要从《Modeling Spatial-Temporal Dynamics for Traffic Prediction》这篇论文入手,主要介绍时空网络(CNN+LSTM)的原理以及demo实现。 背景 卷积神经网络(Convolutional Neural Networks,简称 CNN)是一类特殊的人工神经网络,区别于神经网络其他模型(如,BP神经网络,RNN神经网络等),其最主要的特点是卷积运算操作(Convoluti...
注意:如果把 LSTM 的遗忘门强行置0,输入门置1,输出门置1,则 LSTM 就变成了标准 RNN。 可见LSTM 比 RNN 复杂得多,要训练的参数也多得多。 但是,LSTM 在很大程度上缓解了一个在 RNN 训练中非常突出的问题:梯度消失/爆炸(Gradient Vanishing/Exploding)。这个问题不是 RNN 独有的,深度学习模型都有可能遇到,但是...
相比于传统的建模方式(数据准备 -> 特征提取 -> 模型训练),LSTM模型不仅能抓住某些特定的操作模式,还能记住用户历史的操作行为,在UBT这种和时间序列相关的案例中LSTM模型完胜。 以某信贷产品精准营销为例,LSTM模型以该产品现有借款用户在APP上的海量数据来训练,根据其是否逾期的表现,得到对用户风险评估有较好区分度的...
图2展示了LSTM处理”我爱人工智能”这句话的过程,我们可以看到在第1个时刻,模型输入了单词”我”, ...
情感分类模型介绍CNN、RNN、LSTM、栈式双向LSTM 1、文本卷积神经网络(CNN) 卷积神经网络经常用来处理具有类似网格拓扑结构(grid-like topology)的数据。例如,图像可以视为二维网格的像素点,自然语言可以视为一维的词序列。卷积神经网络可以提取多种局部特征,并对其进行组合抽象得到更高级的特征表示。实验表明,卷积神经网络...
LSTM可以像人的记忆中选择性地记住一些时间间隔更久远的信息,它会根据组成元素的特性,来判断不同信息是被遗忘或被记住继续传递下去。 LSTM就是实现长期记忆用的,实现任意长度的记忆。要求模型具备对信息价值的判断能力,结合自身确定哪些信息应该保存,哪些信息该舍弃,元还要能决定哪一部分记忆需要立刻使用。
因此我们选择2016年到2019年3年数据,横跨两类投资风格,测试其对大盘指数收益率的预测效果,效果如下图。可见LSTM模型相较于传统线性模型ARIMAX对上证综指指数收益率的拟合轻松取得胜利。 图表7 上证综指收益率预测 2.2语音识别 在语音识别方面,LSTM也是风头正劲。2018年谷歌老大哥发布了一新型全神经移动端 Gboard 语音...
1 LSTM处理多维时间序列的问题所在 当把数据输入LSTM时,需要从数据矩阵中抽取样本整理为[batch_size,N,...
这篇文章引入了一个神经网络,以统一的、自底向上的方式来学习基于向量的文本表示方法。该模型首次使用CNN/LSTM来学习句子表示,利用Gated RNN自适应地对句子的语义及其之间关系进行编码。 图2 文本级情感分类的神经网络模型。(w_i)^n代表第n个句子中的第i个词,l_n是句子长度 ...
LSTM-CNN-Attention算法系列之一:LSTM提取时间特征, 哈喽,大家好!我,人称神秘小马哥又回来了,不知道大家还记不记得上期我的秘密三叉戟,轻松力压股市三大指数。 这期我给大家解密一下我三叉戟的第一根利器,LSTM模型,它在股价预测中更优于传统计量模型,并在语音