Zelevinsky Cluster algebras I: Foundations J. Amer. Math. Soc., 15 (2) (2002), pp. 497-529 View in ScopusGoogle Scholar [11] S. Fomin, A. Zelevinsky Cluster algebras II: Finite type classification Invent. Math., 154 (1) (2003), pp. 63-121 CrossrefView in ScopusGoogle Scholar ...
Zelevinsky Cluster algebras I: foundations J. Amer. Math. Soc., 15 (2002), pp. 497-529 View in ScopusGoogle Scholar [9] S. Fomin, A. Zelevinsky The Laurent phenomenon Adv. Appl. Math., 28 (2002), pp. 119-144 View PDFView articleView in ScopusGoogle Scholar [10] S. Fomin, A...
Fomin, S., Zelevinsky, A.: Cluster algebras I: foundations. J. Am. Math. Soc. 15, 497–529 (2002) Article MathSciNet MATH Google Scholar Fomin, S., Zelevinsky, A.: The Laurent phenomenon. Adv. Appl. Math. 28, 119–144 (2002) Article MathSciNet MATH Google Scholar Fordy...
We generalise the notion ofcluster structuresfrom the work of Buan–Iyama–Reiten–Scott to include situations where the endomorphism rings of the clusters may have loops. We show that in a Hom-finite 2-Calabi–Yau category, the set of maximal rigid objects satisfies these axioms whenever there ...
In a recent paper (42), we analyzed the properties of the CC equations that are associated with the existence of subalgebras of excitations. The analysis provides a means to recast the CC equations in the form of a set of eigenvalue problems, and equations that couple these eigenvalue probl...
, Representations of algebras and related topics (Kyoto, 1990), London Mathematical Society, Lecture Note Series, vol. 168, Cambridge University Press, Cambridge, 1992, pp. 200–224. Google Scholar [FZ02a] S. Fomin, A. Zelevinsky Cluster algebras I: foundations J. Amer. Math. Soc., 15 ...
I. Foundations. J. Amer. Math. Soc 15, 497–529 (2002) Article MATH Google Scholar Fomin, S., Zelevinsky, A.: Cluster algebras. IV. Coefficients, Compos. Math 143(1), 112–164 (2007) Article MATH Google Scholar Fu, C.: Feigin’s map revisited. J. Pure Appl. Algebra 222(12...
In this paper, we consider cluster algebras of rankn=2, that is, the integer matrixBis of the form [0r−r0], and the cluster variables form the sequence {xn} given by the recursion above. The rank 2 case is considerably simpler than the general case, but even so, the problem of ...
Zelevinsky Cluster algebras I. Foundations J. Amer. Math. Soc., 15 (2) (2002), pp. 497-529 (electronic) View in ScopusGoogle Scholar [Ho] M. Hoshino Trivial extensions of tilted algebras Comm. Algebra, 10 (18) (1982), pp. 1965-1999 CrossrefView in ScopusGoogle Scholar [HW] D. ...