image_embeddings = self.image_projection(image_features) text_embeddings = self.text_projection(text_features) # Calculating the Loss logits = (text_embeddings @ image_embeddings.T) / self.temperature images_similarity = image_embeddings @ image_embeddings.T texts_similarity = text_embeddings @ tex...
为了训练CLIP,OpenAI从互联网收集了共4个亿的文本-图像对,论文称之为WebImageText,如果按照文本的单词量,它和训练GPT-2的WebText规模类似,如果从数量上对比的话,它还比谷歌的JFT-300M数据集多一个亿,所以说这是一个很大规模的数据集。CLIP虽然是多模态模型,但它主要是用来训练可迁移的视觉模型。论文中Text Enc...
CLIP的基本算法原理如下,为了对image和text建立联系,首先分别对image和text进行特征提取,image特征提取的backbone可以是resnet系列模型也可以是VIT系列模型,text特征提取目前一般采用bert模型,特征提取之后,由于做了normalize,直接相乘来计算余弦距离,同一pair对的结果趋近于1,不同pair对的结果趋近于0,因为就可以采...
CLIP是一个基于超大数据量的pair-wise 预训练模型但是在它的下游任务DalleE-2,Stable-Diffusion中,CLIP也是其中打通文本和图像的核心模块,比如开源的SD2就是使用了OpenCLIP来学习二者的表示,因此了解CLIP是深入了解后续扩散模型非常重要的一环,所以我们今天来主要介绍一下CLIP:Contrastive Language-Image Pre-training...
logits_per_image = outputs.logits_per_image # this is the image-text similarity score probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities 2、图像描述 CLIP可用于图像描述任务,利用它将图像与相应的文本描述相关联的能力,我们可以将CLIP与其他序列到序...
This represents the text-image similarity scores. text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by applying the projection layer to the pooled output of [`CLIPTextModel`]. image_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim...
for i, image in enumerate(original_images): plt.imshow(image, extent=(i - 0.5, i + 0.5, -1.6, -0.6), origin="lower") for x in range(similarity.shape[1]): for y in range(similarity.shape[0]): plt.text(x, y, f"{similarity[y, x]:.2f}", ha="center", va="center", size...
logits_per_image = outputs.logits_per_image # this is the image-text similarity score probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities 2、图像描述 CLIP可用于图像描述任务,利用它将图像与相应的文本描述相关联的能力,我们可以将CLIP与其他序列到序...
相似度计算:点积运算计算文本-图像的cosine similarity,得到 n x n 矩阵的logits(模型预测),越接近1则说明模型预测该文本-图像对是配对的,否则不配对。 计算loss:已知 logits 矩阵对角线的文本和图像是配对的,非对角线元素不配对,因此构造训练标签 np.arange(n),然后分别在图像维度(axis=0) 和文本维度(axis=1...
much more effective than adding it to the image vectors.textness_bias = model.linear.weight[1]text_vector += scale * textness_biasThe bigger the scale, the more emphasis CLIP puts on textual similarity. Let's take a look at some of the results.Results of controlling textual similarity in...