从上式可以看到,Classifier Guidance条件生成只需额外添加一个classifier的梯度来引导。从成本上看,Classifier Guidance 需要训练噪声数据版本的classifier网络,推理时每一步都需要额外计算classifier的梯度。 「Diffusion Models Beat GANs on Image Synthesis」通过详细的数学推导,总结DDPM和DDIM对应的classifier guidance diffu...
参考 Diffusion Models Beat GANs on Image Synthesis CLASSIFIER-FREE DIFFUSION GUIDANCE
3.1 classifier guidance 在《Diffusion Models Beat GANs on Image Synthesis》中,通过在生成过程中的近似噪声中加入分类器梯度信息来进行指导: classifier-guidance 的知道 右式子看出,其实就是形成另一种近似的数据分布: 加了指导信息后的新分布 从可视化上解释这个新的分布的特性:比如有三个类别的数据,每个类别的分...
作者使用了不同的权重来对比试验,发现在unconditional diffusion model 和 conditional diffusion model中,分类器引导都能大幅度地提升模型的性能,即使是在 unconditional diffusion model中使用分类器引导,只要权重足够大,也能接近没有使用分类器引导的 conditional diffusion model 的性能。 试验结果还发现,提高 gradient sc...
classifier guidance diffusion model 代码 Classifier Guidance Diffusion Model是一种用于图像分类和识别的新型深度学习模型。与传统的卷积神经网络不同,CGDM将分类器和特征提取器分离。在CGDM中,特征提取器提取图像的高维特征,分类器则对这些特征进行分类。这种架构的独特之处在于分类器可以指导特征提取器生成有用的特征...
参考文献:Diffusion Models Beat GANs on Image Synthesis 2.2 Semantic Guidance Diffusion 介绍完前面的 classifier guidance 后,显然我们可以把分类器替换成其它任意的判别器,也即更换引导条件,从而实现利用不同的语义信息来指导扩散模型的去噪过程。比如说,我们可以实现 text-guidance 和 image-guidance 等。
guided_diffusion函数实现了Classifier-free Diffusion Guidance,它接受模型、当前时间步的噪声数据、时间步、条件信息和指导比例作为输入,并返回指导的噪声预测。 请注意,这个示例代码只是一个框架,用于说明Classifier-free Diffusion Guidance的基本概念。在实际应用中,你需要一个完整的扩散模型实现,包括训练过程、时间步调度...
Denoising diffusion probabilistic models (DDPMs) with classifier-free guidance such as DALL·E 2, GLIDE, and Imagen have achieved state-of-the-art results in high-resolution image generation. The downside to such models is that their inference process re
百度文库 期刊文献 图书diffusion classifier free guidancediffusion classifier free guidance “diffusion classifier free guidance”的翻译为“扩散分类器免费指导”。©2022 Baidu |由 百度智能云 提供计算服务 | 使用百度前必读 | 文库协议 | 网站地图 | 百度营销 ...
Classifier-Free Guidance 是一种在生成模型中提升生成结果质量的技术,特别是在扩散模型(Diffusion Models)中得到了广泛应用。它允许模型在生成过程中不依赖显式分类器,而是通过组合无条件生成和有条件生成的结果来实现对生成过程的控制。以下是对 Classifier-Free Guidance 的具体定义、应用场景以及相关的代码实现: 1. ...