1 DDPM, score function简单回顾 2 条件生成 Classifier Guidence 2.1 Conditional Reverse Noising Process 2.2 Conditional Sampling for DDIM 2.3 两种推导的关系 3 Classifier Free Guidance References 之前的内容回顾 从EM算法到VAE,从数学角度理解变分自编码器(Variational AutoEncoder) ...
CLASSIFIER-FREE DIFFUSION GUIDANCE这篇文章乍一看比较复杂,其中的的扩散过程描述和一些符号的记法与之前的推导不太一样,主要原因是它结合了后来一些其他研究的方法在里面。例如相比于DDPM的离散扩散过程,这篇文章中采用的是基于SDEs推导出的连续时间上的扩散过程。但这些内容其实不是这篇文章的核心,而抛开这些区别后,...
图1. classifier guidance采样伪代码[1]我们可以从上图看出,与最初的DDPM不同的有两点,1. 方差是计...
即是这些参数对于 classifier-free guidance 来说还不是最优的,但依然可以取得了更有竞争力的性能。 4.1 变化 classifier-free guidance 的强度 作者在 64x64 和 128x128 的分辨率下,在 Imagenet 中训练了 classifier-free guidaned 模型,证明在没有分类器的指导下,该模型也能和 classifier guidance 或 GAN 训...
Classifier-Free方法,直接在模型训练阶段加入条件信息,如对ddpm模型预测公式1,或通过分数模型进一步拆解公式,得到公式2。方法与Classifier-Guidance类似,但简化了采样过程,提供更直接的条件控制。优点是避免了采样效率问题,缺点是训练复杂度增加,需要更大型的模型。两种方法均在条件控制生成领域发挥重要作用...
DDPM论文提出之后,扩散模型就可以生成质量比较高的图片,具有较强的多样性,但是在具体的指标数值上没有超过GAN。同时,在协助用户进行艺术创作和设计时,对生成的图像进行细粒度控制也是一个重要的考虑因素。所以之后尝试将一些具体的...
This is a multi-gpu PyTorch implementation of Diffusion Models with Classifier-Free Guidance (CFG). This repo contains: Training, sampling and FID evaluation code for diffusion models, including Frameworks: DDPM.py: Unconditional DDPM & DDIM ...
We investigate the theoretical foundations of classifier-free guidance (CFG). CFG is the dominant method of conditional sampling for text-to-image diffusion models, yet unlike other aspects of diffusion, it remains on shaky theoretical footing. In this paper, we disprove common misconceptions, by ...
于是引入分类器引导之后,DDPM 和 DDIM 的生成过程转变为: 训练conditional diffusion model 的时候,利用带有噪声的xt来训练一个分类器 p(y|xt,t),然后通过式子(2)加上 p(y|x)的信息,并且在normal 层添加了class embedding。在生成的时候再加上p(y|x)的信息指导整个过程。
The conditioning roughly follows the method described inClassifier-Free Diffusion Guidance(also used inImageGen). The model infuses timestep embeddingsteand context embeddingscewith the U-Net activations at a certain layeraL, via, aL+1=ceaL+te. ...