0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,1,0,1,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,0,1,1,0,1,1,1,1,1,1,1,1,0,1,1,0,0,1,1,1,1,1,1,0,1,1,1])
这里我使用了两种方式输出结果,当classification_report()函数的参数output_dict为False时,输出的是result1形式的字符串;当output_dict为True时,输出的是result2形式的字典。下面将使用字典形式的输出将结果保存到Excel。 4.保存结果到Excel文件 4.1激活文件 wb = Workbook() ws = wb.active 4.2保存结果 ws.append(...
roc_auc_score fromsklearn.metricsimportclassification_reportfromsklearn.metricsimport...少进来 查全率/召回率=TP/(TP+FN)举例:FN是假阴性:新冠病人用的这个 灵敏度 TPR roc 曲线 X:fpr Y:TPR 围成面积:auc 1.导包2. 拟合数据3.预测4.度量 from ROC与AUC的定义与使用详解及模型评估 TPR和FPR的结果。
report=classification_report(y_test,y_pred,output_dict=True) df=pd.DataFrame(report).transpose() df.to_csv("result.csv",index=True) 1. 2. 3. 4. 是不是很简单,下面是我导出来的一个结果: 参考文献 [1].scikit learn output metrics.classification_report into CSV/tab-delimited format. ...
一、实验结果和结论 二、文本分类-从BERT到LLM 2.1 BERTForSequenceClassification 2.2 Qwen2ForSequenceClassification 三、LoRA微调 Qwen2ForSequenceClassification 四、自测结果 4.1 短文本 4.2 长文本 五、相关资料 使用Qwen2ForSequenceClassification实现文本分类任务。 一、实验结果和结论 这几个月,在大模型分类场景...
a在报纸和电视上看到有关报道 Sees the related report on the newspaper and the television[translate] a我打算在国庆期间度一个假 I plan in a National Day period vacation[translate] a有时候我也会看书 Sometimes I also can read[translate]
翻译结果4复制译文编辑译文朗读译文返回顶部 正在翻译,请等待... 翻译结果5复制译文编辑译文朗读译文返回顶部 The to be listed finance report form classification list under analysis research - - take the long profit round the world (Baotou) the mining equipment limited company as the example ...
翻译结果1复制译文编辑译文朗读译文返回顶部 Provide a public facility operator to customers using drinking water should comply with national drinking water health standards and requirements. Drinking water supply units must have a valid health permit and water quality test results report. Drinking Water pe...
翻译结果1复制译文编辑译文朗读译文返回顶部 Operators of public spaces available to customers using drinking water should comply with national drinking water health standards and requirements. Drinking water supply units must have a valid health permit and water quality test results report. Drinking Water ...
分析比较 训练集上的表现(字向量)(序列长度:2000): rnn在面对长文本时直接崩溃了(感觉自己说了一个废话)。再给rnn加上attention之后,rnn得到了救赎,但是效果和FastText基本持平。由此推断lstm+attention 能够获得一个相对较好的结果(如果不考虑速度的话)。 从speed图来看,最快的当然是FastText,可以并行的CNN处于第...