1.使用keras时,导入cifar10数据会自动下载(https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz),但是有时会下载出错; 2.解决: (1)自己下载cifar-10-python.tar.gz,然后将文件放到对应路径(~./keras/datasets/); (2)将文件夹名称cifar-10-python.tar.gz改为cifar-10-batches-py.tar.gz。 这两...
自动下载 如果使用keras的cifar10.load_data()函数,代码会自动去下载 cifar-10-python.tar.gz链接。实际上,通过查看cifar10.py和site-packages/keras/utils/data_utils.py的get_file函数,代码将下载后的文件存放在 ~./keras/datasets目录下,但文件名却被改成了 cifar-10-batches-py.tar.gz 所以如果要避免下载...
一、下载cifar10数据集: 官网太慢了,下面给个百度云链接: 链接:https://pan.baidu.com/s/10cpixjPtBOLeGuxjXgwvLA 提取码:vu0v 二、修改cifar10.load_data()源码 三处修改的地方: cifar10.load_data()源码: # Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache...
那么此时我想在vue实例组件中使用子组件中的PLanguage的data,显然是不能直接获取到的
对于CIFAR10数据集,可以使用TensorFlow的tf.keras.datasets.cifar10.load_data()函数来加载数据。这个函数同样会自动下载并返回训练集和测试集的图像数据和标签。具体代码如下: 代码语言:txt 复制 import tensorflow as tf # 加载CIFAR10数据集 (train_images, train_labels), (test_images, test_labels) = tf...
---> 1 (train_images, train_labels), (test_images, test_labels) = keras.datasets.cifar10.load_data() File ~/.conda/envs/env_name/lib/python3.12/site-packages/keras/src/datasets/cifar10.py:84, in load_data() 79 for i in range(1, 6): 80...
Load local cifarl dataset to numpy array without reporting any errors Code to reproduce the issue put downloaded cifar-10-batches-py to ~/.keras/datasets/ code: import tensorflow as tf (train_images,train_labels), (_, _) = tf.keras.datasets.cifar10.load_data() Other info / logs Include...
train_loader=DataLoader(train_data,batch_size=64) test_loader=DataLoader(test_data,batch_size=64) # 3.加载网络模型 net=Module() #4.定义损失函数 loss_fn=nn.CrossEntropyLoss() #5.定义优化器 learing_rate=1e-2 optimzer=torch.optim.SGD(net.parameters(),lr=learing_rate) ...
像素值范围从 0 到 255。 y_test:uint8 NumPy 形状的标签数组(0-9 范围内的整数)(10000, 1)为测试数据。 例子: (x_train, y_train), (x_test, y_test) = keras.datasets.cifar10.load_data() assert x_train.shape == (50000, 32, 32, 3) assert x_test.shape == (10000, 32, 32, 3...