The CSE-CIC IDS datasets published in 2017 and 2018 have both attracted considerable scholarly attention towards research in intrusion detection systems. Recent work published using this dataset indicates little attention paid to the imbalance of the dataset. The study presented in this paper sets out...
Ali Ghorbani. Please cite their original paper. The dataset offers an extended set of Distributed Denial of Service attacks, most of which employ some form of amplification through reflection. The dataset shares its feature set with the other CIC NIDS datasets, IDS2017, IDS2018 and DoS2017...
在我们最近的数据集评估框架中(Gharib等人,2016),我们确定了建立一个可靠的基准数据集所需的11个标准。以前的IDS数据集都无法涵盖这11个标准。在下文中,我们简要概述了这些标准。 完整的网络配置。一个完整的网络拓扑结构包括调制解调器、防火墙、交换机、路由器和各种操作系统,如Windows、Ubuntu和Mac OS X。
NF-CSE-CIC-IDS2018-v2_cv-全量 8 NF-CSE-CIC-IDS2018-v2_cv 全量预处理生成。由源文件(https://rdm.uq.edu.au/files/ce5161d0-ef9c-11ed-827d-e762de186848)预处理生成。数据包括:n_features, e_features, edge_index,edge_label, tvt, label2idx,edge_ids,node_label...
·探秘 MySQL 索引底层原理,解锁数据库优化的关键密码(下) ·大模型 Token 究竟是啥:图解大模型Token ·35岁程序员的中年求职记:四次碰壁后的深度反思 ·基于Docker+DeepSeek+Dify :搭建企业级本地私有化知识库超详细教程 ·用 .NET NativeAOT 构建完全 distroless 的静态链接应用 ...
CIC-IDS-2017 入侵检测数据集,包含以下8个CSV文件:可以用于机器学习的训练 Friday-WorkingHours-Afternoon-DDos.pcap_ISCX.csv Friday-WorkingHours-Afternoon-PortScan.pcap_ISCX.csv Friday-WorkingHours-Morning.pcap_ISCX.csv Monday-WorkingHours.pcap_ISCX.csv ...
CICIDS2017数据集包含良性和最新的常见攻击,与真实的现实世界数据(PCAPs)相类似。它还包括使用CICFlowMeter进行网络流
This repository contains an in-depth analysis of the Intrusion Detection Evaluation Dataset (CIC-IDS2017) for Intrusion Detection, showcasing the implementation and comparison of different machine learning models for binary and multi-class classification
CICFlowmeter-V4.0 (formerly known as ISCXFlowMeter) is a network traffic Bi-flow generator and analyzer for anomaly detection that has been used in many Cybersecurity datsets such as Android Adware-General Malware dataset (CICAAGM2017), IPS/IDS dataset (
All componenets of the jupyter-notebooks are all found in the folder. Credits Every developer deserves credit for the work and time they put in. Thank you Joule Effect for your contribution in the evaluation of Deep Learning models on NSL-KDD IDS dataset.About...