重要结论 LLMs的能力遵循规模理论 Scaling Law,即随着模型规模的增加,某些性能指标呈现出特定的变化趋势。当模型足够大、语料足够多、算力足够充足的时候,模型的性能不光会线性提升,还会突然的指数级爆发,涌现出小规模模型中不存在的能力。以往在逻辑、正确性等方面的棘手问题将更有希望解决。以往的工作通过大幅度增加...
OpenAI在2020年提出Scaling Law,为达到最优的训练效率,模型参数量的提升比训练数据量的提升更为重要;这一观点在2022年被Google DeepMind推翻,在论文《Training Compute-Optimal Large Language Models》中,DeepMind多方验证了固定计算资源下,达到最优训练效率时,训练数据量和模型参数量呈接近线性增加的关系,这一结论形成了...
大规模语言模型(LLMs)的能力遵循规模理论 Scaling Law,表明随着模型规模的增加,某些性能指标呈现出特定变化趋势。当模型足够大、语料足够多、算力充足时,性能显著提升,甚至出现指数级爆发。以往通过增加模型规模以提高性能,忽略了训练tokens的数量,本文研究揭示了大模型存在训练不足的问题。为了达到最优...
数据:Scaling Law 和 Scaling Data-Constrained Language Models 齐思用户 73 0 1 关注人数3 最新最有趣的科技前沿内容 Chinchilla缩放:复制尝试 内容导读: 在一项引人注目的复制研究中,研究人员对Hoffmann等人于2022年提出的Chinchilla缩放定律进行了批判性审查,这是机器学习领域的一个关键概念。Chinchilla缩放定律的重要...
8.“As you can see, this is a better proposition than the chinchillas,” concluded his future father-in-law without noticing the young man’s nervous whimpering. 9.The traditional dress of the Kazakh eagle hunters can be glimpsed in the hooded down jacket made from chinchilla and cashmere ...
You can also visualize how chinchilla would perform under the given setup and a hypothetical scaling law, optionally with a noise term:import random cc.simulate( num_seeding_steps=401, num_scaling_steps=1, scaling_factor=10.0, target_params=dict( E=1.69337368, A=406.401018, B=410.722827, ...
According to this scaling law, though, PaLM'sparameter countis a mere footnote relative to PaLM'straining data size. PaLM isn't competitive with Chinchilla because it's big. MT-NLG is almost the same size, and yet it's trapped in the pinkish-purple zone on the bottom-left, with Gopher...
Define chinchilla. chinchilla synonyms, chinchilla pronunciation, chinchilla translation, English dictionary definition of chinchilla. n. 1. a. Either of two rodents of the genus Chinchilla that are native to the mountains of South America and are widely
MONEY RULES EVERTHING AND NOTHING ELSEEVERYBODY WANTS THAT COULOURED PAPER DOESN'T MATTERWHICH MEANS TO GET IT SOONER OR LATERListen, I'll make a long story shortIt's hard to accuse the big shots of a crimeMaybe they are the owner of the court of lawAnd soon they turn the table ...
他们基于三种方式来寻找训练大型语言模型的Scaling Law: • 固定模型大小,变化训练数据量。 • 固定计算量(浮点运算),变化模型大小。 • 对所有实验结果,直接拟合参数化损失函数。 最终得出了一个公式: 其中D 是数据量,N 是参数量,其它是训练出来的系数,记住 N 和 D 增大,性能也越好,但需要追求最佳配比:...