int8量化:约需6G GPU显存,考虑其他因素建议8G左右。 默认情况下,ChatGLM3-6B模型以FP16精度加载,因此大约需要16G GPU显存。若显存不足,可通过修改源码进行量化处理。 三、购买与配置云服务器 为了进行本地化部署,需要购买并配置一台云服务器。建议选择支持按量收费的云平台,以便根据实际需求灵活调整资源。在选择云...
BigDL-LLM 工具包简单易用,仅需三步即可完成开发环境搭建、bigdl-llm[xpu]安装以及 ChatGLM3-6B 模型的 INT4量化以及在英特尔独立显卡上的部署。 作者介绍: 刘力,深圳市铂盛科技有限公司的创始人。带领团队成功设计了多种计算机系统,并申请了多项专利和软件著作,铂盛科技为国家高新技术企业,深圳市专精特新企业。铂...
BigDL-LLM 工具包简单易用,仅需三步即可完成开发环境搭建、bigdl-llm[xpu]安装以及 ChatGLM3-6B 模型的 INT4量化以及在英特尔独立显卡上的部署。 作者介绍: 刘力,深圳市铂盛科技有限公司的创始人。带领团队成功设计了多种计算机系统,并申请了多项专利和软件著作,铂盛科技为国家高新技术企业,深圳市专精特新企业。铂...
模型量化会带来一定的性能损失,经过测试,ChatGLM3-6B 在 4-bit 量化下仍然能够进行自然流畅的生成。 3.2CPU 部署 如果你没有 GPU 硬件的话,也可以在 CPU 上进行推理,但是推理速度会更慢。使用方法如下(需要大概 32GB 内存) 代码语言:javascript 复制 model=AutoModel.from_pretrained("THUDM/chatglm3-6b",trus...
简介:本文详细介绍了在Windows系统下部署运行ChatGLM3-6B模型的步骤,包括硬件配置查询、环境准备、项目与模型文件下载、环境配置、模型量化与测试等,并推荐了千帆大模型开发与服务平台进行高效部署。 即刻调用文心一言能力 开通百度智能云千帆大模型平台服务自动获取1000000+免费tokens 立即体验 在Windows系统下部署运行ChatGL...
ChatGLM3-6B由清华技术成果转化的公司智谱AI进行开源,它结合了模型量化技术,使得用户能够在消费级的显卡上进行本地部署,极大地降低了部署门槛。ChatGLM3-6B是一个开源的、支持中英双语的对话语言模型。它基于General Language Model (GLM)架构,拥有62亿参数,这使得它在处理对话任务时能够生成连贯的回复。ChatGLM-6B在...
模型量化会带来一定的性能损失,经过测试,ChatGLM3-6B 在 4-bit 量化下仍然能够进行自然流畅的生成。 3.2CPU 部署 如果你没有 GPU 硬件的话,也可以在 CPU 上进行推理,但是推理速度会更慢。使用方法如下(需要大概 32GB 内存) model=AutoModel.from_pretrained("THUDM/chatglm3-6b",trust_remote_code=True).flo...
记得要将device_map="auto"去掉,quantize中参数4也可改为8,本人笔记本4060显卡在4-bit量化后能够流畅运行,但模型输出效果也会差一些,毕竟硬件太拉。。。 至此已经完成了ChatGLM3本地部署,如果想让模型侧重于某方面应用,后续还需要微调。 参考的网上文章: ...
模型量化会带来一定的性能损失,经过测试,ChatGLM3-6B 在 4-bit 量化下仍然能够进行自然流畅的生成。 3.2CPU 部署 如果你没有 GPU 硬件的话,也可以在 CPU 上进行推理,但是推理速度会更慢。使用方法如下(需要大概 32GB 内存) model = AutoModel.from_pretrained("THUDM/chatglm3-6b", trust_remote_code=True...
模型量化会带来一定的性能损失,经过测试,ChatGLM3-6B 在 4-bit 量化下仍然能够进行自然流畅的生成。 3.2CPU 部署 如果你没有 GPU 硬件的话,也可以在 CPU 上进行推理,但是推理速度会更慢。使用方法如下(需要大概 32GB 内存) model=AutoModel.from_pretrained("THUDM/chatglm3-6b",trust_remote_code=True).flo...