更高效的推理:基于 Multi-Query Attention 技术,ChatGLM2-6B 有更高效的推理速度和更低的显存占用:在官方的模型实现下,推理速度相比初代提升了 42%,INT4 量化下,6G 显存支持的对话长度由 1K 提升到了 8K。更开放的协议:ChatGLM2-6B 权重对学术研究完全开放,在获得官方的书面许可后,亦允许商业使用。选取...
在此基础上,ChatGLM-6B模型还使用了一种基于INT4量化级别的模型量化技术,进一步减少了其显存占用和推理时间。通过这些优化措施,ChatGLM-6B模型可以在消费级的显卡上进行本地部署,并且可以实现实时的对话交互。根据清华大学KEG实验室与智谱AI公司提供的数据,ChatGLM-6B模型在INT4量化级别下最低只需6GB显存就可以运...
ChatGLM-6B: 单卡版本开源的对话模型充分的中英双语预训练:ChatGLM2-6B 在 1:1 比例的 中英语料上训练了 1.4T 的 token 量,兼具双语能力 , 相比于ChatGLM-6B初代模型,性能大幅提升。 •较低的部署门槛:FP16 半精度下,ChatGLM-6B 需要 至少 13GB 的显存进行推理,结合模型量化技术,这一 需求可以进一步降...
8-bit量化下GPU显存占用约为8GB,4-bit量化下仅需6GB占用。所以理论上,只要GPU的显存在6GB以上,就可以尝试在本地部署ChatGLM-6B。 随着对话轮数的增多,对应消耗显存也随之增长,由于采用了相对位置编码,理论上ChatGLM-6B支持无限长的context-length,但总长度超过2048(训练长度)后性能会逐渐下降。 模型量化会带来一定...
ubuntu 部署 ChatGLM-6B 完整流程 模型量化 Nvidia 初 环境与设备 环境准备 克隆模型 代码部署 ChatGLM-6B 完整代码 ChatGLM-6B 是一个开源的、支持中英双语的对话语言模型,基于 General Language Model (GLM) 架构,具有 62 亿参数。结合模型量化技术,用户可以在消费级的显卡上进行本地部署(INT4 量化级别下最低...
在Ubuntu系统上部署ChatGLM-6B模型并进行量化,同时支持Nvidia显卡,需要经过一系列的步骤。以下是详细的操作流程:步骤一:环境准备首先,确保你的Ubuntu系统已经安装了Nvidia显卡驱动。如果还没有安装,你需要先下载并安装适合你显卡型号的驱动。为了方便起见,你可以使用Nvidia官方提供的.deb安装包。步骤二:安装依赖项接下来,...
【说明】:如果采用默认配置启动未量化的ChatGLM-6B,初始状态需要消耗13G的显存,如果显存不够的建议选择量化INT4或者INT8来运行,需要修改configs/model_config.py,将LLM的值修改为chatglm-6b-int4或者chatglm-6b-int8.以下是我基于chatglm-6b-int4运行,进行了几轮对话,基本上效果还可以,显存消耗7G左右。4....
ChatGLM-6B 环境已经有了,接下来开始模型微调,这里我们使用官方的 P-Tuning v2 对 ChatGLM-6B 模型进行参数微调,P-Tuning v2 将需要微调的参数量减少到原来的 0.1%,再通过模型量化、Gradient Checkpoint 等方法,最低只需要 7GB 显存即可运行。安装依赖 # 运行微调需要 4.27.1 版本的 transformerspip ...
更高效的推理:基于 Multi-Query Attention 技术,ChatGLM2-6B 有更高效的推理速度和更低的显存占用:在官方的模型实现下,推理速度相比初代提升了 42%,INT4 量化下,6G 显存支持的对话长度由 1K 提升到了 8K。 更开放的协议:ChatGLM2-6B 权重对学术研究完全开放,在获得官方的书面许可后,亦允许商业使用。