通过运行inference.py脚本,可以对微调后的模型进行基本的推理测试,注意改路径: python inference.py \ --pt-checkpoint "/root/autodl-tmp/ChatGLM3/finetune_chatmodel_demo/output/advertise_gen_pt-20231128-160019-128-2e-2/checkpoint-50" \ --model /root/autodl-tmp/ZhipuAI/chatglm3-6b 验证结果 以下...
五、案例分享:使用ToolAlpaca数据集进行微调 为了更具体地展示ChatGLM3-6B的微调实践,以下是一个使用ToolAlpaca数据集进行微调的案例:下载并处理数据集: 克隆ToolAlpaca数据集仓库 使用脚本处理数据集格式,使其符合ChatGLM3-6B的输入要求 进行微调: 配置训练参数,如学习率、训练轮数等 运行微调脚本,开始训练过程 验证...
(2)【租用机器】在列表中,选用还是的机器,需要选择显存大于 13G 的机器,比如 V100、A4000、RTX3090、RTX4090等,不然ChatGLM-6B模型会因为显存不够而报错(CUDA out of Memory) (3)【选择镜像】点击租用后,在搜索框中输入“chatglm”以快速查找镜像,在系统镜像中选择“ChatGLM3-6B”后,即可下单租用。 (4)【We...
(7)修改微调的数据集路径,修改/ChatGLM3/finetune_chatmodel_demo/scripts/finetune_pt_multiturn.sh (如果使用全量微调,则修改finetune_ds_multiturn.sh) BASE_MODEL_PATH=/ChatGLM3/chatglm3-6b-32kDATASET_PATH=/ChatGLM3/finetune_chatmodel_demo/scripts/my_data.json (8) 执行微调,有全量微调和P-Tun...
本节所讲述的代码脚本在同级目录 ChatGLM3-6B-chat Lora 微调 下,运行该脚本来执行微调过程,但注意,本文代码未使用分布式框架,微调 ChatGLM3-6B-Chat 模型至少需要 21G 及以上的显存,且需要修改脚本文件中的模型路径和数据集路径。 这个教程会在同目录下给大家提供一个 nodebook 文件,来让大家更好的学习。
更强大的基础模型:ChatGLM3-6B 的基础模型 ChatGLM3-6B-Base 采用了更多样的训练数据、更充分的训练步数和更合理的训练策略。在语义、数学、推理、代码、知识等不同角度的数据集上测评显示,* ChatGLM3-6B-Base 具有在 10B 以下的基础模型中最强的性能*。
ChatGLM3-6B模型的LoRA微调实战指南 引言 随着人工智能技术的飞速发展,大语言模型(LLMs)在自然语言处理(NLP)领域展现出强大的能力。ChatGLM3-6B,作为由清华大学KEG实验室和智谱AI联合开发的大语言对话模型,凭借其较小的参数量和高效的性能,成为研究和应用的热门选择。本文将详细介绍如何使用LoRA(Low-Rank Adaptation...
数据准备:收集并预处理相关文本数据,构建数据集。 模型选择:选择ChatGLM3-6B模型进行微调。 训练策略:使用AdamW优化器,设置学习率为5e-5,进行10个epoch的训练。 结果评估:通过准确率、召回率和F1值等指标评估模型性能。 在实践中,我们发现微调后的模型在测试集上取得了显著的性能提升,准确率从80%提高到90%以上。
更强大的基础模型: ChatGLM3-6B 的基础模型 ChatGLM3-6B-Base 采用了更多样的训练数据、更充分的训练步数和更合理的训练策略。在语义、数学、推理、代码、知识等不同角度的数据集上测评显示,ChatGLM3-6B-Base 具有在 10B 以下的基础模型中最强的性能。更完整的功能支持: ChatGLM3-6B 采用了全新设计的 ...
更强大的基础模型:ChatGLM3-6B 的基础模型 ChatGLM3-6B-Base 采用了更多样的训练数据、更充分的训练步数和更合理的训练策略。在语义、数学、推理、代码、知识等不同角度的数据集上测评显示,ChatGLM3-6B-Base 具有在 10B 以下的基础模型中最强的性能。