基于 Multi-Query Attention 技术,ChatGLM2-6B 有更高效的推理速度和更低的显存占用:在官方的模型实现下,推理速度相比初代提升了 42%,INT4 量化下,6G 显存支持的对话长度由 1K 提升到了 8K 。更开放的协议:ChatGLM2-6B 权重对学术研究完全开放,在获得官方的书面许可后,亦允许商业使用。如果您发现我们的...
model_dir = snapshot_download('ZhipuAI/chatglm2-6b', 'v1.0.6') 或者通过如下代码,实现模型下载,以及load model, tokenizer: 模型下载,load model,tokenizer model, tokenizer = get_chatglm2_model_tokenizer(model_dir) 设置GRADIENT_CHECKPOINTING的训练方式,可以有效降低训练显存 GRADIENT_CHECKPOINTING = T...
ChatGLM-6B是开源的文本生成式对话模型,基于General Language Model(GLM)框架,具有62亿参数,结合模型蒸馏技术,实测在2080ti显卡训练中上(INT4)显存占用**6G**左右, **优点**: 1.较低的部署门槛: FP16 半精度下,ChatGLM-6B 需要至少 13GB 的显存进行推理,结合模型量化技术,一需求可以进一步降低到 10GB(INT8...
更高效的推理:基于 Multi-Query Attention 技术,ChatGLM2-6B 有更高效的推理速度和更低的显存占用:在官方的模型实现下,推理速度相比初代提升了 42%,INT4 量化下,6G 显存支持的对话长度由 1K 提升到了 8K。更开放的协议:ChatGLM2-6B 权重对学术研究完全开放,在获得官方的书面许可后,亦允许商业使用。相比...
更高效的推理:推理速度相比初代提升了 42%,INT4 量化下,6G 显存支持的对话长度由 1K 提升到了 8K。更开放的协议:ChatGLM2-6B 权重对学术研究完全开放。ChatGLM2-6B 使用了 Multi-Query Attention,提高了生成速度,同时也降低了生成过程中 KV Cache 的显存占用。同时,ChatGLM2-6B 采用 Causal Mask 进行...
ChatGLM2-6B 使用了 Multi-Query Attention,提高了生成速度。生成 2000 个字符的平均速度对比如下 Multi-Query Attention 同时也降低了生成过程中 KV Cache 的显存占用,此外,ChatGLM2-6B 采用 Causal Mask 进行对话训练,连续对话时可复用前面轮次的 KV Cache,进一步优化了显存占用。因此,使用 6GB 显存的显卡进行 IN...
训练时显存占用和GPU利用率情况。 watch -n 0.5 nvidia-smi 查看训练数据 训练完成后,所有输出会存放在/ChatGLM2-6B/ptuning/output目录下,包括训练保存的模型和运行日志、其他结果数据。 我们可以使用 tensorboard 查看日志可视化图,在 Terminal 输入下面指令即可开启 tensorboard 。
更高效的推理:基于 Multi-Query Attention 技术,ChatGLM2-6B 有更高效的推理速度和更低的显存占用:在官方的模型实现下,推理速度相比初代提升了 42%,INT4 量化下,6G 显存支持的对话长度由 1K 提升到了 8K。 目前ChatGLM-6B 以及 ChatGLM2-6B 均可通过登记进行商用,为方便大家使用,矩池云已第一时间获取到相关...
更开放的协议:ChatGLM2-6B 权重对学术研究完全开放。 ChatGLM2-6B 使用了 Multi-Query Attention,提高了生成速度,同时也降低了生成过程中 KV Cache 的显存占用。同时,ChatGLM2-6B 采用 Causal Mask 进行对话训练,连续对话时可复用前面轮次的 KV Cache,进一步优化了显存占用。
ChatGLM2-6B 使用了 Multi-Query Attention,提高了生成速度。生成 2000 个字符的平均速度对比如下 Multi-Query Attention 同时也降低了生成过程中 KV Cache 的显存占用,此外,ChatGLM2-6B 采用 Causal Mask 进行对话训练,连续对话时可复用前面轮次的 KV Cache,进一步优化了显存占用。因此,使用 6GB 显存的显卡进行 IN...