一、Lora LoRA 微调技术的思想很简单,在原始 PLM (Pre-trained Language Model) 增加一个旁路,一般是在 transformer 层,做一个降维再升维的操作,模型的输入输出维度不变,来模拟 intrinsic rank,如下图的 A …
一行代码开启微调 环境准备 数据集准备 使用LoRA 微调 加载并进行推理 CHATGLM2-6B是清华智普开源的大语言模型,Huggingface 开源的 PEFT 大模型高效微调工具包,本文主要介绍对CHATGLM2-6B大模型进行 LoRA 微调,只要你有训练数据,然后本地下载好大模型的checkpoint,就可以最少只需 1 行代码就可以微调你自己的 LLM。
chatglm2-6b在国内开源的大模型上,效果比较突出。本文章分享的内容是用chatglm2-6b模型在集团EA的P40机器上进行垂直领域的LORA微调。 一、chatglm2-6b介绍 github:https://github.com/THUDM/ChatGLM2-6B chatglm2-6b相比于chatglm有几方面的提升: 1. 性能提升:相比初代模型,升级了 ChatGLM2-6B 的基座模型,...
首先,需要加载chatglm2-6b模型和tokenizer。然后,配置LORA的参数,包括降维比例r、lora_alpha、lora_dropout等。接着,使用peft工具创建LORA模型,并将其加载到P40显卡上进行训练。训练过程中需要监控模型的损失函数和评价指标,以确保微调效果达到预期。 四、总结与展望 通过在P40显卡上对chatglm2-6b模型进行LORA微调,我们...
一、LoRA微调原理LoRA微调的基本思想是通过将大模型的权重矩阵分解为低秩矩阵和稀疏矩阵的和,从而实现对大模型的压缩和加速。这种分解可以有效地降低模型的存储需求和计算复杂度,同时保持模型的性能。二、应用LoRA微调在本节中,我们将详细介绍如何使用LoRA微调chatGLM2-6B模型。首先,我们需要安装LoRA库和相应的深度学习...
目前,大模型的技术应用已经遍地开花。最快的应用方式无非是利用自有垂直领域的数据进行模型微调。chatglm2-6b在国内开源的大模型上,效果比较突出。本文章分享的内容是用chatglm2-6b模型在集团EA的P40机器上进行垂直领域的LORA微调。 一、chatglm2-6b介绍
最快的应用方式无非是利用自有垂直领域的数据进行模型微调。chatglm2-6b在国内开源的大模型上,效果比较突出。本文章分享的内容是用chatglm2-6b模型在集团EA的P40机器上进行垂直领域的LORA微调。 一、chatglm2-6b介绍 github: https://github.com/THUDM/ChatGLM2-6B chatglm2-6b相比于chatglm有几方面的提升: 1...
背景: 目前,大模型的技术应用已经遍地开花。最快的应用方式无非是利用自有垂直领域的数据进行模型微调。chatglm2-6b在国内开源的大模型上,效果比较突出。本文章分享的内容是用chatglm2-6b模型在集团EA的P40机器上进行垂直领域的LORA微调。 一、chatglm2-6b介绍 github:
目前,大模型的技术应用已经遍地开花。最快的应用方式无非是利用自有垂直领域的数据进行模型微调。chatglm2-6b在国内开源的大模型上,效果比较突出。本文章分享的内容是用chatglm2-6b模型在集团EA的P40机器上进行垂直领域的LORA微调。 一、chatglm2-6b介绍
目前,大模型的技术应用已经遍地开花。最快的应用方式无非是利用自有垂直领域的数据进行模型微调。chatglm2-6b 在国内开源的大模型上,效果比较突出。本文章分享的内容是用 chatglm2-6b 模型在集团 EA 的 P40 机器上进行垂直领域的 LORA 微调。 一、chatglm2-6b 介绍 ...