更高效的推理:基于 Multi-Query Attention 技术,ChatGLM2-6B 有更高效的推理速度和更低的显存占用:在官方的模型实现下,推理速度相比初代提升了 42%,INT4 量化下,6G 显存支持的对话长度由 1K 提升到了 8K。更开放的协议:ChatGLM2-6B 权重对学术研究完全开放,在获得官方的书面许可后,亦允许商业使用。选取...
打开 huggingface 页面(Hugging Face – The AI community building the future.ChatGLM-6B-int4 的 int4 量化过的模型,把所有模型文件下载到 …/model 目录下。 至此所有文件下载完毕,大文件夹 …/ChatGLM/ 下有 demo 和配置环境的相关代码,且包含小文件夹 …/ChatGLM/model,model 文件夹内存放模型相关文件。
2、运行部署CPU版本的INT4量化的ChatGLM-6B模型 总结 ChatGLM-6B是清华大学知识工程和数据挖掘小组发布的一个类似ChatGPT的开源对话机器人,由于该模型是经过约1T标识符的中英文训练,且大部分都是中文,因此十分适合国内使用。 数据学习 3 次咨询 5.0 合肥工业大学 管理科学与工程博士 4942 次赞同 去咨询 本教程来自...
在此基础上,ChatGLM-6B模型还使用了一种基于INT4量化级别的模型量化技术,进一步减少了其显存占用和推理时间。通过这些优化措施,ChatGLM-6B模型可以在消费级的显卡上进行本地部署,并且可以实现实时的对话交互。根据清华大学KEG实验室与智谱AI公司提供的数据,ChatGLM-6B模型在INT4量化级别下最低只需6GB显存就可以...
ChatGLM2-6B-INT4 更新时间:2024-11-15 ChatGLM2-6B-INT4是在ChatGLM2-6B的基础上进行INT4 量化,6G 显存支持的对话长度由 1K 提升到了 8K。本文介绍了相关API。 功能介绍 调用本接口,发起一次对话请求。 在线调试 平台提供了 API在线调试平台-示例代码 ,用于帮助开发者调试接口,平台集成快速检索、查看开发文...
注意,目前ChatGLM-6B有3个版本可以使用,没有量化的版本做推理需要13G的GPU显存,INT8量化需要8GB的显存,而INT4量化的版本需要6GB的显存。 模型量化会带来一定的性能损失,经过测试,ChatGLM-6B 在 4-bit 量化下仍然能够进行自然流畅的生成。 本机只有6GB的显存,只能使用INT4版本了。
IT之家此前报道,清华 NLP 团队于 3 月 14 日发布了中英双语对话模型 ChatGLM-6B,初具问答和对话功能。该模型基于 General Language Model(GLM)架构,具有 62 亿参数。结合模型量化技术,用户可以在消费级的显卡上进行本地部署(INT4 量化级别下最低只需 6GB 显存)。ChatGLM2-6B 模型于 6 月 25 日发布...
中的Hugging Face Hub跳转到Hugging Face Hub,默认跳转的是chatglm2-6b,在网址最后追加-int4后重新跳转#网址:https://huggingface.co/THUDM/chatglm2-6b-int4; #下载chatglm2-6b的话运行会报错:Error(s) in loading state_dict for ChatGLMForConditionalGeneration:size mismatch for transformer.encoder.layers...
结合模型量化技术,用户可以在消费级的显卡上进行本地部署(INT4 量化级别下最低只需 6GB 显存)。 ChatGLM-6B 使用了和 ChatGPT 相似的技术,针对中文问答和对话进行了优化。经过约 1T 标识符的中英双语训练,辅以监督微调、反馈自助、人类反馈强化学习等技术的加持,62 亿参数的 ChatGLM-6B 已经能生成相当符合人类...