ChatGLM-6B 参考了ChatGPT的设计思路,在千亿基座模型 GLM-130B 中注入了代码预训练,通过有监督微调等技术实现与人类意图对齐(即让机器的回答符合人类的期望和价值观)。 不同于训练ChatGPT需要1万+ A100显卡,ChatGLM-6B可以单机运行在消费级显卡上(13G可运行,建议16-24G显卡),未来使用空间大。 https://github.c...
`cd/ChatGLM/ChatGLM-6B-main/ptuning //转到微调文件夹 `osscposs://xxx.zip .`//下载压缩数据文件 `unzip -q xxx.zip` //解压 3.更改训练文件参数 修改train.sh和evaluate.sh中的train_file、validation_file和test_file为你自己的 JSON 格式数据集路径,并将prompt_column和response_column修改为 JSON ...
ChatGLM-6B 参考了 ChatGPT 的设计思路,在千亿基座模型 GLM-130B 中注入了代码预训练,通过有监督微调等技术实现与人类意图对齐(即让机器的回答符合人类的期望和价值观)。 不同于训练ChatGPT需要1万+ A100显卡,ChatGLM-6B可以单机运行在消费级显卡上(13G可运行,建议16-24G显卡),未来使用空间大。 ChatGLM-6B...
ChatGLM-6B: 单卡版本开源的对话模型充分的中英双语预训练:ChatGLM2-6B 在 1:1 比例的 中英语料上训练了 1.4T 的 token 量,兼具双语能力 , 相比于ChatGLM-6B初代模型,性能大幅提升。 •较低的部署门槛:FP16 半精度下,ChatGLM-6B 需要 至少 13GB 的显存进行推理,结合模型量化技术,这一 需求可以进一步降...
1.首先下载项目:https://github.com/THUDM/ChatGLM-6B和模型:https://huggingface.co/THUDM/chatglm-6b 将模型放到项目的子文件中: 比如将项目放在D:\ChatGLM-6B;可以在ChatGLM-6B文件夹建立子文件夹chatglm-6b:将模型放到里面。 提示:模型比较大,下载需要等待。
ChatGLM-6B是一种基于Transformer结构的语言模型,由OpenAI开发。它是一种双向预训练模型,具有强大的自然语言生成和对话生成能力。与GPT系列模型相比,ChatGLM-6B在自然语言理解和生成方面表现出更好的性能。同时,ChatGLM-6B还支持多语言,可以轻松地扩展到多种语言的应用场景。二、为什么要使用ChatGLM-6B模型 高度可扩展...
ChatGLM2-6B使用了Multi-Query Attention,提高了生成速度。生成2000个字符的平均速度对比如下:Multi-Query Attention 同时也降低了生成过程中 KV Cache 的显存占用,此外,ChatGLM2-6B 采用 Causal Mask 进行对话训练,连续对话时可复用前面轮次的 KV Cache,进一步优化了显存占用。因此,使用 6GB 显存的显卡进行 INT...
因此,在这个项目下我们参考ChatGLM-Tuning的代码,尝试对大模型ChatGLM-6B进行 Finetune,使其能够更好的对齐我们所需要的输出格式。 1. 环境安装 由于ChatGLM 需要的环境和该项目中其他实验中的环境有所不同,因此我们强烈建议您创建一个新的虚拟环境来执行该目录下的全部代码。
本文结合目前在中文应用场景中具有出色表现的开源预训练大模型 ChatGLM-6B,介绍如何通过对其开源 Prompt-tuning 代码进行极少量的修改,并结合第四代英特尔® 至强® 可扩展处理器[1]的全新内置 AI 加速引擎——英特尔® 高级矩阵扩展 (Intel® Advanced Matrix Extension,简称英特尔® AMX)及配套的软件工具...
解锁ChatGLM-6B的潜力:优化大语言模型训练,突破任务困难与答案解析难题 LLM(Large Language Model)通常拥有大量的先验知识,使得其在许多自然语言处理任务上都有着不错的性能。 但,想要直接利用 LLM 完成一些任务会存在一些答案解析上的困难,如规范化输出格式,严格服从输入信息等。