8 class CharCNN(object): 9 """ 10 char-CNN用于文本分类 11 在charCNN 模型中我们引入了BN层,但是效果并不明显,甚至存在一些收敛问题,待之后去探讨。 12 """ 13 def __init__(self, config, charEmbedding): 14 # placeholders for input, output and dropuot 15 self.inputX = tf.placeholder(tf...
在charCNN 模型中我们引入了BN层,但是效果并不明显,甚至存在一些收敛问题,待之后去探讨。 #定义char-CNN分类器classCharCNN(object):"""char-CNN用于文本分类"""def__init__(self, config, charEmbedding):#placeholders for input, output and dropuotself.inputX = tf.placeholder(tf.int32, [None, config...
char_cnn char_cnn¶ classhanlp.layers.embeddings.char_cnn.CharCNN(field:str,embed:Union[int,hanlp.layers.embeddings.embedding.Embedding],num_filters:int,ngram_filter_sizes:Tuple[int,...]=(2,3,4,5),conv_layer_activation:str='ReLU',output_dim:Optional[int]=None,vocab_size=None)[source...
Char-CNN 论文Character-level Convolutional Networks for Text Classification中提出了Char-CNN来做文本分类。 Char-CNN首先制作字符表,对应把字符转换成one-hot向量,于是一个句子就转换成了字符one-hot向量构成的向量矩阵,然后经过多个卷积层、池化层和全连接层进行分类。 个人感觉论文中对模型细节的描述实在太精简了...
ACharacter Convolutional Neural Network (CharCNN)is a machine learning model used to classify text by analyzing its features. The model can be broken down into four essential components: Input:sample text passed into the model for training and testing ...
这篇论文针对文本分类问题提出了一种基于字符级的卷积神经网络架构,并将其与传统模型和其他深度学习模型进行了对比,实验结果表明 Char-CNN 是一种有效的方法。 问题: 1.“The character quantization order is backward so that the latest reading on characters is always placed near the begin of the output, ...
[5, 10, 15] Num features: 70 Num workers: 1 Optimizer: Adam Save folder: models_CharCNN Save interval: 1 Shuffle: False Train path: data/data103753/train.csv Val interval: 200 Val path: data/data103753/test.csv Verbose: False W0815 01:56:47.041232 848 device_context.cc:404] Please ...
CharCNN This repository contains my implementation usingTextifyfor Character-level Convolutional Networks for Text Classification. It can be used to reproduce the results in the following article: Xiang Zhang, Junbo Zhao, Yann LeCun.Character-level Convolutional Networks for Text Classification. Advances...
药物不良反应,社交媒体,深度学习,Attention,BiLSTM-CharCNN推特等社交媒体为药物不良反应监测提供了新的信息源.本文结合深度学习技术从海量的社交媒体用户评论中监测出其是否有关药物不良反应推文.为了提高精度,丰富推文的信息特征,提出一种端到端的基于注意力机制BiLSTM-CharCNN神经网络模型.首先,使用CharCNN模型提取字符...
提出的CharTextCNN方法因为只使用的字符信息,所以可以用于多种语言中。 论文结构 摘要: 本文从实验角度探索了字符级别卷积神经网络用于文本分类的有效性。 我们构造了几个大规模的文本分类数据集,实验结果表明我们的字符级别文本分类模型能够取得最好的或者非常有竞争力的结果。