\large{\bf{Lemma\quad 5\quad \left(Data\,\,Processing\,\,Theorem\right):}} If U→ X → Y → V forms a Markov chain, then: I\left(U;V\right)\le I\left(X;Y\right)\tag{17} \triangle The Channel Coding Theorem and its Proof[1] ...
Joint Source-Channel Coding Theorem. A discrete memoryless source S is recoverable over a discrete memoryless channel p(y|x) with mismatch α if H(S) < α maxp(x) /(X; Y). Conversely, if H(S) > α maxp(x) /(X; Y), it is not recoverable. A proof of this theorem can be ...
前段时间学习第七章Channel Capacity 的时候觉得最难的地方就是Channel coding theorem的证明了,查了很多资料包括一些视频,总觉得讲解的差了那么一点。所以我希望能能够尽量用通俗简单的方式把这个奠定通信半壁江山的定理讲清楚。 (Channel coding theorem)对于离散无记忆信道,小于信道容量C的所有码率都是achievable的。具体...
Moreover, the proofs so obtained often are simpler and more intuitive than earlier ones. The present tutorial paper should propagate this belief.doi:10.1007/978-3-7091-2900-5_3János KörnerSpringer Vienna
Channel Capacity 2: Channel Coding Theorem 技术标签: Information TheoryReference: Elements of Information Theory, 2nd Edition Slides of EE4560, TUD Content Preliminaries Jointly Typical Sequences Channel Coding Theorem Channel with Feedback Source-Channel Separation Prel......
Proof We leave the proof as an exercise. 3.4 Sampling Data Coding Let ϕ, ϕ*,ψ, ψ*, h, g, h*, and g* be given as in Theorem 9.3.2. Let Uh=span L2{ϕ(th−k)|k∈ℤ},h>0. Assume a signal x is the sampling data of a function fε Uh: x(n) = f(hn). ...
IndexTerms—Achievability,channelcapacity,codingfornoisychannels,converse,,niteblocklengthregime,Shannontheory. I.INTRODUCTION THEproofofthechannelcodingtheoreminvolvesthreetages: •Converse:anupperboundonthesizeofanycodewithgivenarbitraryblocklengthanderrorprobability. •Achievability:alowerboundonthesizeofacodeth...
Shannon's noisy channel coding theorem is a cornerstone in the history of classical information theory. A proof of Shannon's noisy channel coding theorem u... LI Gang,YE Mingyong,XM Lin - 《中国科学:物理学 力学 天文学(英文版)》 被引量: 7发表: 2011年 Coding theorems of classical and qu...
On the Proof of the Entanglement-assisted Coding Theorem for a Quantum Measurement Channel. Lobachevskii J Math 42, 2377–2385 (2021). https://doi.org/10.1134/S1995080221100140 Download citation Received07 April 2021 Revised17 April 2021 Accepted23 April 2021 Published19 October 2021 Issue Date...
The close connection between the Slepian-Wolf problem and channel coding was first noticed by Wyner [34], who used an example of binary sources to present an intuitive proof of the Slepian-Wolf theorem. In this section, an example of distributed encoding of binary sequences is provided, with...