funccblas_dgemv(___Order:CBLAS_ORDER,___TransA:CBLAS_TRANSPOSE,___M:Int32,___N:Int32,___alpha:Double,___A:UnsafePointer<Double>!,___lda:Int32,___X:UnsafePointer<Double>!,___incX:Int32,___beta:Double,___Y:UnsafeMutablePointer<Double>!,___incY:Int32) ...
[0]; cblas_dgemv(layout, // matrix has row-major layout trans, // should not be transposed m, // has m number of rows n, // n number of columns 1, // alpha = 1 a_ptr, // pointer to matrix A n, // dimensionality of leading dimension of A (#columns, in this case) ...
// CBLAS 2 // voidcblas_dgemv(constenumCBLAS_LAYOUTlayout,constenumCBLAS_TRANSPOSETransA,constintM,constintN,constintK,constdoublealpha,constdouble*A,constintlda,constdouble*X,constintincX,constdoublebeta,double*Y,constintincY); // CBLAS 3 ...
Solved: Hello, I am interested in the following operation: Y = A^T * X using the cblas_dgemv or cblas_dgemm routine in MKL. In the code I use small
func cblas_dgemv(CBLAS_ORDER, CBLAS_TRANSPOSE, Int32, Int32, Double, UnsafePointer<Double>!, Int32, UnsafePointer<Double>!, Int32, Double, UnsafeMutablePointer<Double>!, Int32) func cblas_dger(CBLAS_ORDER, Int32, Int32, Double, UnsafePointer<Double>!, Int32, UnsafePointer<Double>!, In...
func cblas_dgemv( _ ORDER: CBLAS_ORDER, _ TRANSA: CBLAS_TRANSPOSE, _ M: __LAPACK_int, _ N: __LAPACK_int, _ ALPHA: Double, _ A: UnsafePointer<Double>?, _ LDA: __LAPACK_int, _ X: UnsafePointer<Double>?, _ INCX: __LAPACK_int, _ BETA: Double, _ Y: UnsafeMutable...
cblas_dgemv(CblasRowMajor,CblasNoTrans,1,200,1,u,200,sigma,1,0,return,1) for(i=0; i<200; i++) { sum=...+return[i]; } The return value is a vector (return[200]return[200]) in which return[0]=sigma[0-199]*u[0-199]return[0]=sigma[0-199]*u[0-199]. i have a vect...