\quad 在本文中,我们提出了一种解决这些问题的新型检测器架构Cascade R-CNN。它是R-CNN的多级扩展,其中级联更深的检测器级依次对接近的FP具有更高的选择性。依次训练R-CNN阶段的级联,使用一个阶段的输出来训练下一个阶段。这是由于观察者的动机,即回归器的输出IoU几乎总是好于输入IoU。可以在图c中进行观察,其...
cascade_rcnn和其他框架的网络结构简略图 上图中 (d) 和 (c) 很像,iterative bbox at inference是在推断时候对回归框进行后处理,即模型输出预测结果后再多次处理,而Cascade R-CNN在训练的时候就进行重新采样,不同的stage的输入数据分布已经是不同的了。 简单来说 cascade R-CNN 是由一系列的检测模型组成,每...
上图中 (d) 和 (c) 很像,iterative bbox at inference是在推断时候对回归框进行后处理,即模型输出预测结果后再多次处理,而Cascade R-CNN在训练的时候就进行重新采样,不同的stage的输入数据分布已经是不同的了。 简单来说 cascade R-CNN 是由一系列的检测模型组成,每个检测模型都基于不同 IOU 阈值的正负样本...
Figure3(d)表示Cascade R-CNN,可以看到它和Figure3(b),Figure3(c)的结构比较像。但和Figure3(b)最主要的区别是Cascade R-CNN中的检测模型是基于前一阶段的输出进行训练,而不是Figure3(b)中那样3个模型都是基...
关于Cascade R-CNN的几种网络结构 Figure3(a)表示Faster RCNN,因为双阶段类型的目标检测算法基本上都基于Faster RCNN,所以这里也以该算法为BaseLine。 Figure3(b)表示迭代式的边界框回归,从图也非常容易看出思想,就是前一个检测模型回归得到的边界框坐标初始化下一个检测模型的边界框,然后继续回归,这样迭代三次后...
论文阅读: Cascade R-CNN Introduction Cascade R-CNN的本质是 “Cascade roi-wise subnet” 。 传统的Faster R-CNN结构如下: 在train阶段,其最终的输出结果是通过如下一个简单的IoU阈值判断来决定哪些proposal作为output: 对IoU阈值设置的探索 由于早前VOC只以 mAP50mAP50mAP_{50} 作为唯一的性能衡量标准,为了...
图1 Cascade R-CNN网络结构 Fig.1 Architecture of the Cascade R-CNN network 考虑到实验环境的显存和算力,骨干网络主要采用了ResNet50[作为特征提取网络来进行对比实验,并接入特征金字塔网络进行多尺度的特征融合,提升对小目标的检测效果。 1.1 在线难例挖掘采样 ...
Cascade Mask R-CNN 网络结构 受Mask R-CNN发,作者将Cascade R-CNN推广到实例分割很简单,作者提供了三种策略,分别对应下图中b、c、d中将分割头S放在不同的位置。 实验结果 作者在通用目标检测、实例分割数据集COCO上进行了实验,换上骨干网ResNeXt-152的Cascade R-CNN 又刷出了新高度!AP 达到50.9。如下图: ...
于是乎,作者设计了Cascade R-CNN网络。 图figure 3(d)是Cascade R-CNN的网络结构对比图,Figure 3(a)是Faster R-CNN的网络结构图,其中H0代表的是RPN网络,H1代表的是Faster R-CNN进行检测与分类的head,C1代表最终的分类结果,B1代表最终的bounding box回归结果。那么Cascade R-CNN有什么不同呢?H1那一部分是一样...
1.1,Faster RCNN 回顾 先回顾下Faster RCNN的结构,下图是Faster RCNN的结构图。 training阶段和inference阶段的不同在于,inference阶段不能对proposala进行采样(因为不知道gt,自然无法计算IoU),所以RPN网络输出的300RoIs(Proposals)会直接输入到RoI pooling中,之后通过两个全连接层分别进行类别分类和bbox回归。