To overcome these challenges, this paper proposes a retina vessel segmentation algorithm based on an attention mechanism, called CAS-UNet. Firstly, the Cross-Fusion Channel Attention mechanism is introduced, and the Structured Convolutional Attention block is used to replace the...
electronics Article CAS-UNet: A Retinal Segmentation Method Based on Attention Zeyu You 1, Haiping Yu 1,2,*, Zhuohan Xiao 1, Tao Peng 1 and Yinzhen Wei 2,3 1 School of Computer Science and Artificial Intelligence, Wuhan Textile University, Wuhan 430200, China; 2115063008@mail.wtu.edu.cn...
Davunetide 是一种微管稳定肽 (microtubule-stabilizing),在体外与神经元特异性βIII微管蛋白相互作用并稳定其活性。Davunetide 可透过血脑屏障,无毒。Davunetide 抑制Aβ聚集和Aβ诱导的神经毒性。英文名称:Davunetide CAS号:211439-12-2 分子式:C36H60N10O12 分子量:824.92 单字母:NAPVSIPQ 密度:1.3...
VIP 扩展信息
UNII号 LDJ89SS0YG 化学名 MOSUNETUZUMAB CAS号 1905409-39-3 结构式图片 NCIT码 C129691 INN_ID 10621 扩展信息 VIP试用医疗器械查询APP下载客服中心常见问题数据可视化数据分析挖掘系统网站地图业务介绍友情链接 400-678-0778 投诉热线: (023) 6262 8397 邮箱: tousu@yaozh.com QQ: ...
达夫奈肽/Davunetide/CAS211439-12-2 是一种鼻内神经肽疗法,来源于活动依赖性神经保护蛋白 (ADNP),ADNP 是神经胶质细胞在暴露于血管活性肠肽时释放的一种生长因子。其中包含八个氨基酸 Asn-Ala-Pro-Val-Ser-Ile-Pro-Gln 的肽。该肽具有高效的神经保护活性。 Name: 达夫奈肽/DavunetideSynonyms: NAP, AL-...
达夫奈肽/Davunetide/CAS211439-12-2是一种基于活动依赖性神经保护蛋白(ADNP)的鼻内神经肽疗法。ADNP是神经胶质细胞在血管活性肠肽刺激下释放的生长因子,包含八个氨基酸(Asn-Ala-Pro-Val-Ser-Ile-Pro-Gln)的肽链,展现出高效神经保护活性。达夫奈肽的化学名称为NAPVSIPQ,是一种八氨基酸肽。在预...
3D U-Net model for volumetric semantic segmentation written in pytorch - pytorch-3dunet/resources/3DUnet_denoising/train_config_regression.yaml at master · Lycas/pytorch-3dunet
1429655-90-2(RMBOEEVDXVEBFI-ZCXUNETKSA-N)1429655-90-2 基本信息更多信息 中文名称: RMBOEEVDXVEBFI-ZCXUNETKSA-N 中文同义词: 英文名称: RMBOEEVDXVEBFI-ZCXUNETKSA-N 英文同义词: RMBOEEVDXVEBFI-ZCXUNETKSA-N;9-Octadecenoic acid (9Z)-, 3-chloro-2-[(1-oxohexadecyl)oxy]propyl ester CAS号...
name: UNet2D in_channels: 1 out_channels: 1 # use Groupnorm instead of Batchnorm for DSB; Batchnorm introduces artifacts around nuclei due to the difference # in intensity distribution between images with large and small cells layer_order: gcr num_groups: 8 f_maps: [32, 64, 128] #conv...