环境:CartPole-v0,算法:DQN,设备:cpu回合:10/200,奖励:10.00,Epislon: 0.062回合:20/200,奖励:85.00,Epislon: 0.014回合:30/200,奖励:41.00,Epislon: 0.011回合:40/200,奖励:31.00,Epislon: 0.010回合:50/200,奖励:22.00,Epislon: 0.010回合:60/200,奖励:10.00,Epislon: 0.010回合:70/200,奖励:10.00,Ep...
OpenAI健身房是一个用于强化学习算法测试和开发的开源平台,其中的cartpole-v0是其中一个经典的环境。在cartpole-v0环境中,有一个竖直放置的杆子(pole),杆子的一端固定在一个小车(cart)上。游戏的目标是通过控制小车的左右移动,使得杆子保持竖直不倒。 在这个环境中,观察(observation)是指代理程序(agent)从环境...
强化学习从基础到进阶-案例与实践[4.1]:深度Q网络-DQN项目实战CartPole-v0 1、定义算法 相比于Q learning,DQN本质上是为了适应更为复杂的环境,并且经过不断的改良迭代,到了Nature DQN(即Volodymyr Mnih发表的Nature论文)这里才算是基本完善。DQN主要改动的点有三个: 使用深度神经网络替代原来的Q表:这个很容易理解...
parser.add_argument('--algo_name',default='DQN',type=str,help="name of algorithm") parser.add_argument('--env_name',default='CartPole-v0',type=str,help="name of environment") parser.add_argument('--train_eps',default=200,type=int,help="episodes of training") # 训练的回合数 parser....
在CartPole环境的情况下,您可以在此源代码中找到两个已注册的版本。如您所见,行50到65存在两个CartPole版本,标记为v0和v1,它们的区别在于参数max_episode_steps和reward_threshold: register( id='CartPole-v0', entry_point='gym.envs.classic_control:CartPoleEnv', max_episode_steps=200, reward_threshold=...
摘要:OpenAI Gym是一款用于研发和比较强化学习算法的工具包,本文主要介绍Gym仿真环境的功能和工具包的使用方法,并详细介绍其中的经典控制问题中的倒立摆(CartPole-v0/1)问题。最后针对倒立摆问题如何建立控制模型并采用爬山算法优化进行了介绍,并给出了相应的完整python代码示例和解释。要点如下: ...
强化学习从基础到进阶-案例与实践[4.1]:深度Q网络-DQN项目实战CartPole-v0 1、定义算法 相比于Q learning,DQN本质上是为了适应更为复杂的环境,并且经过不断的改良迭代,到了Nature DQN(即Volodymyr Mnih发表的Nature论文)这里才算是基本完善。DQN主要改动的点有三个: ...
OpenAI健身房cartpole-v0理解观察和动作关系 python、openai-gym 我对建模系统很感兴趣,这个系统可以使用openai健身房来制作一个模型,不仅表现良好,而且希望更好,而且不断改进,以收敛于最好的动作。 这就是我初始化env的方法env = gym.make("CartPole-v0")它返回一组信息;观察,奖励,完成和信息,信息总是没...
1. CartPole-V0 环境 本次实验使用 gym 自带的CartPole-V0环境。这是一个经典的一阶倒立摆控制问题,agent 的任务是通过左右移动保持车上的杆竖直,若杆的倾斜度数过大,或者车子离初始位置左右的偏离程度过大,或者坚持时间到达 200 帧,则游戏结束 此环境的状态空间为 ...
env = gym.make('CartPole-v0') # 输入维度为4(车位置, 车速, 杆角度, 杆速度),输出维度为2(向左概率和向右概率),隐藏层为100个神经元 STATE_DIM, ACTION_DIM = 4, 2 model = models.Sequential([ layers.Dense(100, input_dim=STATE_DIM, activation='relu', name = "input1"), layers.Dropout...