这里我们使用VGG16,对一些图像进行了比较,下图中可以看到CAM、Grad-CAM和Grad-CAM++的看法有多么不同。虽然它们都主要集中在它的上半身,但Grad-CAM++能够将其整体视为重要部分,而CAM则将其某些部分视为非常重要的特征,而将一些部分视为其预测的辅助。而Grad-CAM只关注它的冠和翅膀作为决策的重要特征。对于这...
cam=zoom(cam,H/cam.shape[0]) cam=cam / np.max(cam) returncam 结果对比 这里我们使用VGG16,对一些图像进行了比较,下图中可以看到CAM、Grad-CAM和Grad-CAM++的看法有多么不同。虽然它们都主要集中在它的上半身,但Grad-CAM++能够将其整体视为重要部分,而CAM则将其某些部分视为非常重要的特征,而将一些部分...
Grad-CAM++不仅包括gradcam技术,它增加了引导反向传播,只通过类别预测的正梯度进行反向传播。 Grad-CAM++这种优化的原因是因为Grad-CAM在识别和关注多次出现的对象或具有低空间占用的对象方面存在问题。 所以Grad-CAM++给予与预测类相关的梯度像素更多的重要性(正梯度),通过使用更大的因子而不是像Grad-CAM那样使用常数...
cam=np.maximum(grad_CAM_map,0)cam=zoom(cam,H/cam.shape[0])cam=cam/np.max(cam)returncam 结果对比 这里我们使用VGG16,对一些图像进行了比较,下图中可以看到CAM、Grad-CAM和Grad-CAM++的看法有多么不同。虽然它们都主要集中在它的上半身,但Grad-CAM++能够将其整体视为重要部分,而CAM则将其某些部分视为...
Grad-CAM代码实现: 本文以PyTorch自带的VGG11-BN为例,分步骤讲解并用代码实现Grad-CAM的整个流程和细节。 Grad-CAM前面的几个实现步骤与CAM相同,这里照搬。 1.准备工作 首先导入需要用到的包: importmathimporttorchfromtorchimportTensorfromtorchimportnnimporttorch.nn.functionalasFfromtypingimportOptional,Listimport...
最后就是将Grad-CAM调整为图像大小并规范化,以便它可以叠加在图像上。 AI检测代码解析 defgrad_cam(input_model, image, layer_name='block5_conv3',H=224,W=224): cls=np.argmax(input_model.predict(image)) #Get the predicted class y_c=input_model.output[0, cls] #Probability Score ...
cam=zoom(cam,H/cam.shape[0]) cam=cam/np.max(cam) returncam 结果对比 这里我们使用VGG16,对一些图像进行了比较,下图中可以看到CAM、Grad-CAM和Grad-CAM++的看法有多么不同。虽然它们都主要集中在它的上半身,但Grad-CAM++能够将其整体视为重要部分,而CAM则将其某些部分视为非常重要的特征,而将一些部分视...
Grad-CAM是CAM的通用形式,解决了这个问题。Grad-CAM它和CAM的区别是在对特征图进行加权时,求权重的这一步wkc。CAM在GAP后增加一个MLP作为特征图的加权... CNN最后一层含有丰富的,高度抽象的语义特征,人类难以理解。 对一个深层的卷积神经网络而言,通过多次卷积和池化以后,它的最后一层卷积层包含了最丰富的空间...
Grad-CAM++ Grad-CAM++不仅包括gradcam技术,它增加了引导反向传播,只通过类别预测的正梯度进行反向传播。 Grad-CAM++这种优化的原因是因为Grad-CAM在识别和关注多次出现的对象或具有低空间占用的对象方面存在问题。 所以Grad-CAM++给予与预测类相关的梯度像素更多的重要性(正梯度),通过使用更大的因子而不是像Grad-CA...
Grad-CAM++ Grad-CAM++不仅包括gradcam技术,它增加了引导反向传播,只通过类别预测的正梯度进行反向传播。 Grad-CAM++这种优化的原因是因为Grad-CAM在识别和关注多次出现的对象或具有低空间占用的对象方面存在问题。 所以Grad-CAM++给予与预测类相关的梯度像素更多的重要性(正梯度),通过使用更大的因子而不是像Grad-CA...