Supported operators Basic operations +−×/÷⋅: Powers, roots, exponentials 32√2√e3 Miscellaneous operations %|−3|5! Brackets () Trigonometry cossintancotcoshsinhtanhcoth Inverse trigonometry acosasinatanacotacoshasinhatanhacotharccosarcsinarctanarccotarcosharsinhartanharcoth ...
Sin Cos Tan Deg to Rad Rad to Deg Type a value like: 60, -30, pi/3, 3pi/2, etc. Angle: Unit: degrees (°) radians (rad) Answer: sin(30°) = 0.5 sin(30°) is exactly: 1/2 Note: angle unit is set to degrees....
Sine: sin(arctan(x))=x/1+x2sin(arctan(x))=x/1+x2; Cosine: cos(arctan(x))=1/1+x2cos(arctan(x))=1/1+x2; and Tangent: tan(arctan(x))=xtan(arctan(x))=x. Other useful relationships with arctangent are: arctan(x)=π/2−arccot(x)arctan(...
It states that {eq}h^2 = p^2 + b^2\\ {/eq} where h = hypotenuse of the right triangle p = perpendicular of the right triangle. b = base of the right triangle Answer and Explanation:1 We can calculate {eq}\sin \ \cos \ and \ \tan {/eq} without a calculator by using the...
fix some problems A calculator that is easier to use, and its functions are powerful enough. 【Features】 1. Basic calculations and scientific calculations 2. Trigonometric functions sin, cos, tan, cot and inverse trigonometric functions arcsin, arccos, arctan, arccot ...
Tangent calculator to easily calculate the tan function of any angle. ➤ Calculate cos(x) with this trigonometry calculator which accepts degrees and radians.
sincostancscseccot arcsinsin-1arccoscos-1arctantan-1 arccsccsc-1arcsecsec-1arccotcot-1 sinhcoshtanhcschsechcoth arsinhsinh-1arcoshcosh-1artanhtanh-1 arcschcsch-1arsechsech-1arcothcoth-1 ff 'f ''gg 'g '' SiCiShiChi EiE1Enli
sin-1sinh-1cot-1y√xxy789÷C cos-1cosh-1sec-13√xx3456× == tan-1tanh-1csc-1√xx2123- = ncrnpr%log10x0±.+ =x=y lnelg22 orandxorlneABC0b = lg22DEF0x = Deg360ºRad2π -- History -- Math Forum Some guidelines for question askers.?
tan ( A + B ) =$\frac{(tan A + tan B)}{(1 – tan A tan B)}$ tan ( A – B ) =$\frac{(tan A – tan B)}{(1 + tan A tan B)}$ sin ( A + B ) sin ( A – B ) = sin2A – sin2B = cos2B – cos2A ...
sin(90°)=1sin(90°)=1. Between those angles, we can find all possible values of the sine function. The next angle in degrees we will consider is 45°45°. For this angle, we imagine building a square with diagonal 11. The diagonal splits the square in two 45°45°-45°45°...