本文以FCM为例,说明聚类过程。 FCM[1-3]是一种重要的聚类算法,其目标是将n维空间中的数据X = {x_1, ..., x_N}分配到C个聚类中心v_1, ..., v_C。在欧氏距离意义下,数据靠近哪个聚类中心就属于哪个类,如图1所示。 图1 FCM聚类示意图 该问题可以使用下面的优化模型表示: 其中‖∙‖表示欧氏距离,m...
其次对改进Fuzzy C-means算法进行文献回顾,对其概况、基本思想、算法进行详细介绍,再是应用了改进Fuzzy C-means算法,本文的数据是由所设计地软件在微博平台上获取的数据,最后得到相关结论和启示。 改进Fuzzy C-means 聚类算法是由 Steinhaus1955 年 Lloyd195年Ball&Hall1965 年 McQueen1967 年分别在各自的不同的科学...
K-means聚类算法是硬聚类算法,是典型的基于原型的目标函数聚类分析算法点到原型——簇中心的某种距离和作为优化的目标函数,采用函数求极值的方法得到迭代运算的调整规则。K-means聚类算法以欧氏距离作为相异性测度它是求对应某一初始聚类中心向量 最优分类,使得评价指标E值最小。K-means聚类算法采用误差平方和准则函数作...
模糊C均值聚类(Fuzzy C-means)算法简称FCM算法,是软聚类方法的一种。FCM算法最早由Dunn在1974年提出然后经 Bezdek推广。 硬聚类算法在分类时有一个硬性标准,根据该标准进行划分,分类结果非此即彼。 软聚类算法更看重隶属度,隶属度在[0,1]之间,每个对象都有属于每个类的隶属度,并且所有隶属度之和为 1,即更接近...
Fuzzy C-means算法概述 Fuzzy C-means算法是聚类算法中主要算法之一,它是一种基于划分的聚类算法,是最为经典的,同时也是使用最为广泛的一种基于划分的聚类算法,它属于基于距离的聚类算法。1967年,J.B.MacQueen提出的Fuzzy C-means算法是目前为止在工业和科学应用中一种极有影响的聚类技术。Fuzzy C-means 算法实现...
本文就将采用改进Fuzzy C-means算法对基于用户特征的微博数据进行聚类分析。去年,我们为一位客户进行了短暂的咨询工作,他正在构建一个主要基于微博用户特征聚类研究的分析应用程序(点击文末“阅读原文”获取完整代码数据)。 首先对聚类分析作系统介绍。其次对改进Fuzzy C-means算法进行文献回顾,对其概况、基本思想、算法进...
C-means算法是一种模糊聚类算法,与K-means算法类似,但每个数据点可以属于多个簇,而不是只属于一个确定的簇。C-means算法引入了一个模糊权重因子,用于描述数据点与每个聚类中心的相似程度。 具体步骤如下: 1.随机选择C个初始聚类中心。 2.对每个数据点,计算其与每个聚类中心的相似度,并计算出属于每个聚类中心的隶...
FCM(Fuzzy c-means)算法的基本过程: 假设需要将数据集中的数据分为C种类型,那么就存在C个聚类中心,每个数据样本i属于某一类型的隶属度(概率)为$\mu_ij$,因此目标函数可以写成$J = \sum^C_{i=1}\sum^n_{j=1}\mu^m_{ij}(x_j-C_i)^2$(当样本靠近其隶属的类型中心点时,其距离小,概率大,反之距...
Fuzzy c-means算法是一种重要的聚类方法,其目标是将数据空间中的数据分配至预设的聚类中心。在欧氏距离的框架下,数据点越接近某个中心,就越有可能被划归至该中心所代表的类别。FCM算法的核心在于寻找最佳的聚类中心,使得数据点与中心之间的距离的模糊化值之和最小化。这一过程可以被表示为一个优化...
经典k-均值聚类算法的每一步迭代中,每一个样本点都被认为是完全属于某一类别。我们可以放松这个条件,假定每个样本xjxj模糊“隶属”于某一类的。 硬聚类把每个待识别的对象严格的划分某类中,具有非此即彼的性质;模糊聚类建立了样本对类别的不确定描述,更能客观的反应客观世界,从而成为聚类分析的主流。