for(int k=0;k<=IMG_SIZE - W_SIZE;k++) //特征平面的行 列平移 行卷积 { for(int r=0;r<=IMG_SIZE - W_SIZE;r++) //特征平面的列 行平移 列卷积 { tmp = 0.0; //单次卷积 点对点相乘 然后相加 for(int i=0;i<W_SIZE;i++) //卷积的行 { for(int j=0;j<W_SIZE;j++) //卷...
要用C不依赖第三方库写一个神经网络,需要从数学推导、网络模型和工程实现三个方面着手。项目本身没有什么价值,只是个人学习神经网络一个小玩具。代码地址:github.com/yuanrongxi/s 神经网络涉及到的数学主要是线性代数和微积分求导,神经网络中的计算大部分是通过矩阵来完成的,首先需要弄明白标量、向量、张量等概念,掌...
LeCun在1998年就已经提出的成熟算法LeNet-5卷积网络,而只是DeepLearnToolbox内的cnn代码的c语言实现,不过我们会比较二者之间的区别,因为二者的基本原理是相似的。另外,为了不使博客篇幅过长,所以博客中贴的代码并不完整,完整代码请见附件。 这篇博客总共分为四节: 第一节:前言,介绍项目结构及Minst数据集测试训练...
卷积神经元个数:12个卷积神经元,每个卷积神经元都输入6张12*12的池化结果图。 卷积核尺寸:每个卷积神经元对应6个5*5卷积核。 偏置:每个卷积神经元对应一个偏置值。· 卷积模式:Valid卷积模式。 激活函数:Relu函数。 输出尺寸:每个卷积神经元输出(12-5+1)*(12-5+1)=8*8的卷积结果,总共12个卷积神经元,因...
目前搭建卷积神经网络(CNN)一般直接用 Pytorch、Tensorflow 等深度学习框架,很简单。但如果是手写反向传播过程,情况就比 BP 网络复杂多了,因为不仅仅是矩阵相乘。 目标是,从零开始实现 CNN。 刚开始,本人搜网上的卷积神经网络反向推导的相关博客,发现了几个问题: ...
接下来我们分层分析整个网络的反向传播过程。在本文的卷积神经网络中主要有以下四种情况: 一、输出层(单层神经网络层) (1)误差能量定义为实际输出与理想输出的误差 这里的d是理想预期输出,y指实际输出,i指输出位,本文的网络输出为10位,所以N=10. (2)误差能量关于参数(权重)的导数。
🔥基于CNN进行图像识别(附模型代码)✅ 卷积神经网络(CNN): - 用于图像识别和处理的人工神经网络。 - 专门处理像素数据。 ✅ 神经网络基础: - 由输入层、隐藏层和输出层组成。 - 多层感知器(MLP) - 跟锁神学AI于20240722发布在抖音,已经收获了14
卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度学习(deep learning)的代表算法之一。 我们先来看卷积神经网络各个层级结构图: 上图中CNN要做的事情是:给定一张图片,是车还是马未知,是什么车也未知,现在需要模型判断这张图片里具...
FANN(Fast Artificial Neural Networks):FANN是一个开源的C语言库,用于实现快速的人工神经网络计算。它支持前向传播和反向传播算法,可以用于训练和预测各种类型的数据。 Caffe:Caffe是一个基于C++语言的深度学习框架,但它也提供了C语言的接口。它支持多种神经网络架构和算法,如卷积神经网络、循环神经网络等。 TensorFlow...