问如何在tensorflow c api中执行transpose或argmax等操作ENtensorflow是谷歌google的深度学习框架,tensor中文叫做张量,flow叫做流。 RNN是recurrent neural network的简称,中文叫做循环神经网络。 MNIST是Mixed National Institue of Standards and Technology dat
0.001],high=[100,10],size=(self.n_particles,2))velocities=np.zeros_like(particles)best_pos=particles.copy()best_fitness=[self.fitness(p[0],p[1])forpinparticles]global_best_idx=np.argmax(best_fitness)global_best=particles[global_best_idx]for_inrange(self.max_iter):r1...
cluster_membership=np.argmax(u, axis=0) for i in range(n): ax.plot(ds_log_scaled[0,:][cluster_membership==i], ds_log_scaled[1,:][cluster_membership==i], '.', color=colors[i]) # Mark the centroid for each class for x in cntr: ax.plot(x[0], x[1], 'r*') ax.set_ti...
argmax: 返回向量中最大元素索引 dot:向量点乘 matmul:矩阵乘法 read_matrix:读取矩阵文件 write_matrix:写入矩阵文件 calssify:调用以上函数连接各层 同时我们需要编写测试文件来测试程序的正确性,让我们用向量点乘举个例子 dot.s 功能:将两个向量点乘 输入: a0 (int*) 指向v0第一个元素的指针 a1 (int*) 指...
argmax(1); std::cout << "prediction:" << prediction << std::endl; int maxk = 3; auto top3 = std::get<1>(output.topk(maxk, 1, true, true)); std::cout << "top3: " << top3 << '\n'; std::vector<int> res; for (auto i = 0; i < maxk; i++) { res.push_...
();// 模型推理torch::Tensor output=model.forward({tensor}).toTensor();autoprobabilities=torch::softmax(output,1);automaxValues=probabilities.argmax(1);// 结果解析std::string result;for(inti=0;i<maxValues.size(0);++i){intindex=maxValues[i].item<int>();if(index<labels.size()){result...
metacell with maximal correlations\({{{\rm{ann}}}={{{\rm{atlas.type}}}\left(\right.{{{\rm{argmax}}}_{i}[{{{\rm{cor}}}(\log ({u}_{g}+1),\,\log ({\epsilon }+{e}_{gi}^{atlas})])\), where\({u}_{g}\)is the UMI vector for the E9 cell and\(\epsilon={10...
correct_prediction=tf.equal(tf.argmax(y_conv,1),tf.argmax(y_,1)) accurace=tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) tf.global_variables_initializer().run() start = 0 end = BATCH duaration=0 #开始训练 for i in range(500): ...
auto pred = result.argmax(1); cout << "max index:" << pred << endl; /*std::tuple<torch::Tensor,torch::Tensor> res_sort = result.sort(-1, true); torch::Tensor top_scores = get<0>(res_sort)[0]; torch::Tensor top_idxs = get<1>(res_sort)[0].toType(torch::kInt32);...
所在地: 深圳 注册时间: 2018-10-28 已发帖子: 636 积分: 531 个人网站 Re: 计划手写一份纯C...