Eigen 是一个高级的 C++ 库,用于线性代数、矩阵和向量运算,数值解算,以及相关的数学运算。 Eigen 被广泛应用于计算机视觉、机器学习、信号处理等领域。 Eigen 库的设计理念是提供高效、灵活和易于使用的数学运算工具。 Eigen 概述 Eigen 是一个高性能的 C++ 模板库,主要用于线性代数、矩阵和向量运算、数值解决以及相...
我在实验中进行了一系列的非稀疏矩阵相乘运算,矩阵规模也逐渐增大,单线程的运行时间如下表所示,其中采用的测试轮数为5轮,其中红色表示性能最好的一组实验结果。 从图中可以看出,OpenBLAS的性能最好,MKL的表现也很不错,而EIGEN的表现却很糟糕。 多线程版本 在多线程的测试中,我们采用多个CPU核心来做矩阵乘法运算,...
从图中可以看出,OpenBLAS的性能最好,MKL的表现也很不错,而EIGEN的表现却很糟糕。 多线程版本 在多线程的测试中,我们采用多个CPU核心来做矩阵乘法运算,所有的结果也同样采用5轮训练,我们采用的CPU核数分别是8,16,32,48。 Cores = 8 Cores = 16 Cores = 32 Cores = 40 Cores = 48 可以看出,MKL和OpenBLAS...
Eigen::MatrixXf C(2,4); //igen::VectorXf v(4); Eigen::Array<int,1,Eigen::Dynamic>B; B.resize(4); A << 1, 2, 6, 9, 3, 1, 7, 2; B << 0, 1, 0, 0; multiply(A,B); } 我想将矩阵A和向量B相乘。 我知道Eigen不会自动升级,并且B必须转换为浮点向量才能发生乘法。 编译时...
在自动驾驶开发中,我们常用Eigen库,因此本文主要介绍Eigen库的矩阵操作,同时为了方便对比,我们用C++完成之前numpy中所有的操作和运算。 1. 直接运算 1.1 采用数组进行运算 如果矩阵的大小是固定的,简单的矩阵运算可以用C++二维数组来实现。下面是一个简单的矩阵加法、乘法的例子:...
现在我们有了这个,我们可以很容易地并行化。Eigen可以在内部并行化矩阵-矩阵乘法,但不能在外部并行化...
现在我们有了这个,我们可以很容易地并行化。Eigen可以在内部并行化矩阵-矩阵乘法,但不能在外部并行化...
Eigen:基于线性代数的C ++模板库,主要用于矩阵,向量,数值求解器和相关算法。SLAM中常用的Ceres、G2O等项目均是基于Eigen库。 Eigen库的优点: 支持整数、浮点数、复数,使用模板编程,可以为特殊的数据结构提供矩阵操作。 OpenCV自带到Eigen的接口。 支持逐元素、分块、和整体的矩阵操作。
1. Eigen: Eigen 是一个高级的 C++库,用于线性代数、矩阵和向量运算,包括求解特征值和特征向量。