int b){return(a*b)/gcd(a,b);}intmain(){int a,b;printf("请输入两个整数:");scanf("%d %d",&a,&b);int result=lcm(a,b);printf("最小公倍数是:%d\n",result);return0;}
辗转相除法, 又名欧几里德算法(Euclidean algorithm),是求最大公约数的一种方法。它的具体做法是:用较小数除较大数,再用出现的余数(第一余数)去除除数,再用出现的余数(第二余数)去除第一余数,如此反复,直到最后余数是0为止。如果是求两个数的最大公约数,那么最后的除数就是这两个数的最大公约数。 二、算法...
Copy #include<iostream>#include<stdio.h>#include<algorithm>#include<string.h>#include<vector>#include<math.h>#include#include<queue>#include<set>usingnamespacestd;typedeflonglongll;constintmod=998244353;constintMAXN=2e5+50;constdoublepi=3.1415926536;charch[MAXN];llgcd(ll a,ll b){returnb?gcd...
如图使用辗转相除法求最小公倍数:方法步骤:一、打开VC2010(或其他C语言编译器),新建项目-选择Win32为控制台应用程序-命名-确定 二、选择源文件-添加-新建项 三、选择C++文件-命名.c-添加 四、输入如下程序 include <stdio.h> int main(){ int a,b,A,B;int lol,lpl;printf ("输入两个...
给出最小公倍数LCM(A,B) = C中的A,C求最小的B. 思路: lcm=(a*b)/gcd,把等号两侧同时除以a得到lcm/a=b/gcd左侧是已知的,右侧的gcd是a的因子中的一个,直接枚举a的所有因子找到答案就行了。 #include<math.h> #include<stdio.h> #include<algorithm> ...
在数学中,最大公约数的定义可以通过辗转相除法(Euclidean algorithm)来实现。辗转相除法是一种基于整除的算法,它通过不断地将两个数中较大的数除以较小的数来得到它们的余数,然后将较小的数和余数继续进行对除运算。当两个数的余数为0时,较小的数即为最大公约数。 辗转相除法的算法如下: ```c int gcd(...
#include <algorithm> #include <iomanip> #include <stack> #include <queue> using namespace std; #define sd(n) scanf("%d", &n) #define sdd(n, m) scanf("%d%d", &n, &m) #define sddd(n, m, k) scanf("%d%d%d", &n, &m, &k) ...
#include<stdio.h> #include<math.h> #include<string.h> #include<algorithm> using namespace std; int main() { int a,b; scanf("%d%d",&a,&b); int c=__gcd(a,b); printf("%d\n",c);//求出最⼤公约数 int d=a*b;//推理可知最⼩公倍数是两个数乘积除于最⼤公约数 int e=...
#include<iostream>#include<cmath>#include<algorithm>using namespacestd;#definell long long#defineinf 0x3f3f3f3fboolis_prim(ll x){ ll m =sqrt(x);for(ll i =2; i <= m; i++) {if(x % i ==0)returnfalse; }returntrue; }
最小公倍数定义: 两个或多个整数公有的倍数叫做它们的公倍数,其中除0以外最小的一个公倍数就叫做这几个整数的最小公倍数。 求最小公倍数 正整数 a 和正整数 b 的最小公倍数,是指能被 a 和 b 整除的最小的正整数。请你求 a 和 b 的最小公倍数。 比如输入5和7,5和7的最小公倍数是35,则...