1.定义神经网络类 根据本人的理解,输入层只有自变量,所以定义神经网络类的时候没有把输入层计算在内,方便程序编写. 每一层神经元包含的变量有输入x;偏置b;参数w;输出a,每一层的输出a同时也是下一层的输入x.如果神经网络不具备学习功能,仅用这些参数就够了. 每层神经元用于学习的变量有净输出值z,这个值用于计...
随着层数的增加,我们看到输出值迅速向0靠拢,在后几层中,几乎所有的输出值 x 都很接近0!回忆优化神经网络的back propagation算法,根据链式法则,gradient等于当前函数的gradient乘以后一层的gradient,这意味着输出值 x 是计算gradient中的乘法因子,直接导致gradient很小,使得参数难以被更新! 让我们将初始值调大一些,均值...
Theano:Theano是一个Python库,用于实现高效的数值计算,特别是深度学习算法。它支持多种神经网络架构和算法,如卷积神经网络、循环神经网络等。二、C语言神经网络算法C语言神经网络算法是指使用C语言实现的各种神经网络算法,如前向传播算法、反向传播算法、梯度下降算法等。下面是一些常见的C语言神经网络算法: 前向传播算法...
double outputs[4][1] = {{0}, {1}, {1}, {0}}; 好的,下面我来详细解释一下这个神经网络的实现过程。 首先,我们需要定义输入层、隐藏层和输出层的大小。在本例中,输入层包含两个神经元(分别表示X和Y),隐藏层包含四个神经元,输出层包含一个神经元。 cCopy code #define INPUT_SIZE 2 #define HID...
一、Net类的设计与神经网络初始化 闲言少叙,直接开始 既然是要用C++来实现,那么我们自然而然的想到设计一个神经网络类来表示神经网络,这里我称之为Net类。由于这个类名太过普遍,很有可能跟其他人写的程序冲突,所以我的所有程序都包含在namespace liu中,由此不难想到我姓刘。在之前的博客反向传播算法资源整理中,我...
C语言实现CNN CNN 1.算法介绍 1.1DNN(全连接) 全连接深度神经网络,顾名思义,每个神经元都与相邻层的神经元连接。在这个实验中,每个数字的image是2828,也就是784(=2828)个数值,每个数值对应一个像素值,值的大小反应像素点的强度。这就意味着我们网络的输入层有784个神经元。输出层呢?由于我们是预测0-9...
该程序是模拟tensflow游乐场写的,实现了基本的神经网络效果并验证通过,不多废话,上代码。 核心代码在nn.c中,包含激活函数和损失函数,前向传播,反向传播以及更新权重与偏执的函数。 #include <stdint.h> #include <stdlib.h> #include <math.h> #include "config.h" ...
2、b;/ 精度控制参数int LoopCout; / 最大循环次数 bp_nn;double fnet(double net) /Sigmoid 函数 ,神经网络激活函数return 1/(1+exp(-net);int InitBp(bp_nn *bp) / 初始化 bp 网络printf(" 请输入隐层节点数,最大数为100:n");scanf("%d", &(*bp).h);printf(" 请输入学习率: n");scanf...
神经网络的C语言实现#include <stdlib.h> #include <math.h> #include <stdio.h> #include #define OUT_COUT 2 //输出向量维数 #define IN_COUT 3 //输入向量维数 #define COUT 6 //样本数量 typedef struct { //bp人工神经网络结构 int h; //实际使用隐层数量 double v[IN_COUT][50]; //隐藏...
#include"stdio.h"#include<math.h>constdoublee=2.7182818;//设置一个神经网络//有一个隐藏层(含有两个节点)//输出层有一个节点//输入数据是二维(两个节点)//一个样..